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Abstract. We discuss how to implement a secure card game without the
need for a trusted dealer, a problem often denoted “Mental Poker” in the
literature. Our solution requires a broadcast channel between all players
and the number of bits needed to represent each card is independent of
the number of players. Traditional solutions to “Mental Poker” require
a linear relation between the number of players and the number of bits
required to represent each card.

1 Introduction

The notion of playing card games “via telephone”, or “Mental Poker” as it is
sometimes called, has been historically important in the development of cryp-
tography. Mental Poker protocols enable a group of mutually mistrusting players
to play cards electronically without the need for trusted dealers. Such a set of
protocols should allow the normal card operations (e.g. shuffling, dealing, hiding
of card information from players) to be conducted in a way which allows cheaters
to be detected.

The original scheme for this problem was developed by Shamir, Rivest and
Adleman [15] not long after the publication of the RSA algorithm itself. How-
ever, this was soon noticed to be insecure since the naive RSA function leaks
information about individual bits. This observation led Goldwasser and Micali
[10,11] to develop the notion of semantic security and the need for probabilistic
public key encryption. Thus Mental Poker led to the current subject of provable
security and the current definitions of what it means for a public key encryption
scheme to be secure.

After the work of RSA and Goldwasser and Micali there has been other
work on how to conduct two-player card games over a public network with no
trusted centre, see [1,6,7,9,12,17]. A full protocol suite for an arbitrary card game
with an arbitrary number of players and with no trusted centre is described by
Schindelhauer [16]. However, all of these schemes make use of the Goldwasser–
Micali probabilistic encryption scheme [11] based on the quadratic residuosity
problem, but the Goldwasser-Micali system is very inefficient since it requires a
full RSA-style block to encrypt a single bit of information.
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As a result the above schemes require

l × �log2 M� × k

bits to represent each card where

– l is the number of players in the game.
– M is the number of different cards, usually M = 52.
– k is the number of bits in a secure RSA modulus.

Our protocols will give message sizes which are independent of the number
of players. In addition our protocol is essentially independent of the number of
different cards in the game, at least for any game which one could imagine.

We give two instantiations of our scheme, one based on discrete logarithms
and one based on a factoring assumption (actually Paillier’s system [13]). We
therefore require only k bits to represent each card, where using current security
recommendations,

– k = 322 if a 160-bit elliptic curve is chosen for the discrete logarithm based
variant, and point compression is used.

– k = 2048 if a discrete logarithm based variant is used in a finite field of order
≈ 21024.

– k = 2048 if the Paillier variant is used with an RSA modulus of 1024 bits.

However unlike the system described in [16] for our factoring based protocol we
assume that players may not join an existing game, however they may leave. For
both discrete logarithm based versions players may both leave and join a game
as it proceeds.

The paper is structured as follows. Firstly we define some notions related to
proofs of knowledge which we shall require. Then we introduce the notion of a
Verifiable l-out-of-l Threshold Masking Function, or VTMF, which is the basic
cryptographic operation which we will apply repeatedly to our cards. We then
go on to show how the protocols to implement the card game are implemented
via a VTMF. Then we give descriptions of two VTMF’s, one based on discrete
logarithms and one based on Paillier’s assumption [13].

We end this introduction by noting that in some sense Mental Poker makes no
sense in a model which allows collusion. For example one could use the following
protocol suite to create an electronic Bridge game. However, two partners, say
East and West, could contact each other by some other means, i.e. not using
the broadcast channel, and exchange information which would enable them to
have an advantage over North and South. No Mental Poker suite of protocols
could detect such cheating. However, the protocols which follow ensure that the
colluding parties obtain no more information than if they had colluded in a real
game.
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2 Proofs of Knowledge

In the following sections we will make reference to various properties of proofs of
knowledge. Much of this introductory section summarizes the work of Cramer,
Damg̊ard and Schoenmakers [5].

Consider a binary relation R = {(x, w)} for which membership can be tested
in polynomial time. For any x we say that w(x) is the set of witnesses such that
(x, w) ∈ R. A proof of knowledge protocol P is a two party protocol between a
prover P and a verifier V . The prover and verifier are given a common input x
and the prover has a private input w. The prover’s aim is to convince the verifier
that w ∈ w(x) without revealing what w actually is.

Following Cramer et. al. we restrict to the following subset of such protocols.
We assume that the protocol is a three round public coin protocol in that the
protocol is an ordered triple

m1, c, m2

where m1 is called the commitment and comes from the prover, c is a random
challenge chosen by the verifier and m2 is the provers final response.

We assume the following three properties:

1. P is complete.
If w ∈ w(x) then the verifier will accept with probability one.

2. P has the “special soundness” property.
For any prover P given two conversations between P and V with message
flows

(m1, c, m2) and (m1, c
′, m′

2)

with c �= c′ then an element of w(x) can be computed in polynomial time.
3. P is honest verifier zero-knowledge.

There is a simulation S of P that on input x produces triples which are in-
distinguishable from genuine triples between an honest prover and an honest
verifier.

To fix ideas consider the Schnorr identification scheme which identifies users
on proof of knowledge of a discrete logarithm h = gx. We have

m1 = gk, m2 = k + x · c

for some random k chosen by P and some random c, chosen by V after P has
published m1. The verifier checks that

m1 = gm2 · h−c.

This satisfies all the properties above. Indeed it is the “special soundness” prop-
erty which allows Pointcheval and Stern [14] to show that the associated signa-
ture scheme derived via the Fiat–Shamir paradigm is secure.

Cramer et. al. use the above three round honest verifier proofs of knowledge
with the special soundness property to create proofs of knowledge of elements
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for arbitrary access structures. For example if P the discrete logarithm xi of one
of h1 = gx1 , h2 = gx2 , h3 = gx3 . Using the protocols of [5], P can convince V
that they know one of the discrete logarithms without revealing which one.

We shall use such protocols to allow players to show that an encryption of
a card is an encryption of a card from a given set, or that an encrypted card
comes from the set of hearts, or that a player has no hearts left in their hand,
etc. etc.

3 Verifiable l-out-of-l Threshold Masking Functions

For our later protocols we will require a set of cryptographic protocols, which
we call a Verifiable l-out-of-l Threshold Masking Function, or VTMF for short.
In a later section we shall give two examples of such a function, one based on a
discrete logarithm assumption and one based on a factoring assumption.

In keeping with the notation in the rest of the paper we shall assume there
are l players and there are M values which are to be encrypted (or masked). A
VTMF is a set of protocols, to be described in detail below, which produces a
semantically secure encryption function (under passive adversaries) from a space
M to a space C. We shall assume that there is a natural encoding

{1, . . . , M} −→ M

which allows us to refer to messages and card values as the same thing. In
addition there is a nonce-space R which is sufficiently large and from which
nonces are chosen uniformly at random.

A VTMF consists of the following four protocols:

3.1 Key Generation Protocol

This is a multi-party protocol between the l parties which generates a single
public key h. Each player will also generate a secret xi and a public commitment
to this share, denoted hi. The shares xi are shares of the unknown private key,
x, corresponding to h.

3.2 Verifiable Masking Protocol

A masking function is an encryption function

Eh :
{M × R −→ C

(m, r) �−→ Eh(m; r),

and an associated decryption function

Dh :
{ C −→ M

Eh(m; r) �−→ m,



374 A. Barnett and N.P. Smart

with respect to the public key h, we abuse notation and equate knowledge of the
private key x with knowledge of the function Dh. In addition there is a honest-
verifier zero-knowledge protocol to allow the masking player to verify to any
other player that the given ciphertext Eh(m; r) is an encryption of the message
m. Since we will use this protocol in a non-interactive manner using the Fiat-
Shamir transform the fact it is only honest-verifier will be no problem, as we
will achieve security in the random oracle model. We insist that the encryption
function is semantically secure under passive attacks. However, we cannot achieve
semantic security under active attacks since we also require the ability to re-mask
a message, as we shall now explain.

3.3 Verifiable Re-masking Protocol

Let Cm denote the set of all possible encryptions of a message m under the
masking function above. Given an element c of Cm there is a function which re-
encrypts c to give another representative in Cm, and which can be applied without
knowledge of the underlying plaintext m and only knowledge of the public key h.
Hence, this function can be applied either by the player who originally masked
the card or by any other player. We shall denote this function by E ′,

E ′
h :
{Cm × R −→ Cm

(c, r) �−→ E ′
h(c; r).

Again we also insist that there is a honest-verifier zero-knowledge protocol to
allow the player conducting the re-masking to verify to any other player that
the given ciphertext E ′

h(c; r) is an encryption of the message m, without either
player needing to know the underlying plaintext message m.

We insist that if r ∈ R is chosen uniformly at random then E ′
h(c; r) is also

uniformly distributed over Cm. In addition we also insist that if a user knows r1
and r2 such that

c1 = E ′
h(c; r1) and c2 = E ′

h(c1, r2)

then they can compute r such that

c2 = E ′
h(c; r).

This last property is needed so that certain proofs of knowledge can be executed.

3.4 Verifiable Decryption Protocol

Given a ciphertext c ∈ C this is a protocol in which each player generates a value
di = D(c, xi) and an honest-verifier zero-knowledge proof that the value di is
consistent with both c and the original commitment hi.

We assume there is a public function

D′(c, d1, . . . , dl) = m

which decrypts the ciphertext c given the values d1, . . . , dl. This function should
be an l-out-of-l threshold scheme in that no subset of {d1, . . . , dl} should be able
to determine any partial information about m.
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4 The Card Protocols

For the purpose of this paper, we assume an authentic broadcast channel between
all parties. This can be achieved easily in practice using digital signatures and a
passive bulletin board to hold the player communications. There are two types
of operations; operations on a single card and operations on a deck (or set) of
cards.

4.1 Operations on a Card

We assume that the players have executed the key set up phase for an l-out-of-l
VTMF as above, where l is the number of players. Following the approach of
[16], we describe the card operations needed in most games. Each card will be
represented by an element c of the space C. The value of the card is the unique
m ∈ M such that c = Eh(m; r) for some value r ∈ R. A card is called open if
c = Eh(m; r), and r is a publically known value.

Creation of an open card. The creation of an open card requires only the
input of one player. To create a card with type m, the player simply creates card
value c = Eh(m; 1). This format can be read and understood by everyone, so
verification of the precise card value is trivial.

Masking a card. Masking a card is the application of a cryptographic function
that hides the value or type of the card. The homomorphic property of the
encryption scheme allows an already masked card to be re-masked. Also, a zero
knowledge proof exists that allows the verifier to show that the masked card is
the mask of the original card. Thus masking is achieved by use of the verifiable
re-masking function E ′

h described above.

Creation of a private card. To create a private card, Alice privately creates
a card m and then masks it to give c = Eh(m; r) which she then broadcasts to
all other players. The purpose of broadcasting the masked card is to commit to
the generated card and to prevent Alice from generating a wild card. The proof
of knowledge here has to be slightly different to that described above since we
need to show that the card is a mask of a valid card, i.e. m is a genuine card
value. This proof is accomplished by the protocol of Cramer et. al. [5] in which
one can show that c is the masking of an element of the required subset M.

Creation of a random covered card. Unlike the scheme proposed by Schin-
delhauer [16], there is no trivial way of generating a random covered card unless
the number of cards is equal to the number of plaintexts of the underlying en-
cryption scheme. In our instantiations below the size of the underlying plaintext
space is exponential and so this approach is not going to work.
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There are two possible solutions to this problem:

– One option is to enable the entire underlying plaintext space P to be consid-
ered as card values. Hence, one would require a cryptographic hash function

H : P −→ M
which maps plaintexts to possible card values. This assumes that every ci-
phertext corresponds to a valid encryption, which in our instantiations is a
valid assumption.

– The second solution is to create a deck containing all the possible cards
that could be randomly generated. Each player then shuffles and masks the
deck and a card is chosen at random. This is a more costly method, but
distributes the probability of selection correctly while giving no player a
chance to influence the generation of the card. Operations on a desk, such
as shuffling, are considered later.

Opening a card. To open a card, each player executes the verifiable decryption
protocol. In the case of publicly opening a card, this information is broadcast to
everyone. In the case of privately opening a card one player keeps their decryption
information secret. Thus enabling them to read the card. The associated proofs in
the verifiable decryption protocol are used to ensure that no player can sabotage
the game by providing incorrect decryptions.

There are other possible card opening situations such as when a card needs to
be opened by two players, N and S, but no others. Due to the broadcast nature
of our network we need to solve this using a two stage process: One player, N say,
first re-masks the card and provides a proof of the re-masking. The group minus
N and S, then contribute their shares of the decryption of both cards. Player
N contributes a decryption of the card to be opened by S, and S contributes a
decryption of the card to be opened by N . Similar situations can be dealt with
by adapting the above ideas.

4.2 Operations on a Deck

A deck D is modelled as a stack of cards of size n. There is no reason for there to
be only one deck in the game, and each players hand could be considered a deck
in itself. At the start of the game a player may create the deck. The notation for
masking a card Eh(m; r) is often abused to also mean masking the entire deck
in the form Eh(D; R), where R = {r1 . . . rn}. In this case, each card is masked
individually using the corresponding r from R.

Creating the deck. This operation is equivalent to the creation of several
open cards which are then stacked and mask-shuffled. In order to ensure that
the player who created the deck does not follow where the cards are, each player
must mask-shuffle the deck before play can begin. Any player who does not
mask-shuffle the deck could have all of their cards discovered by the collusion of
his opponents.
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Mask-shuffling the deck. We define a composite operation called mask-shuffle
which both shuffles the deck and applies a mask to each individual card in the
deck. To mask-shuffle the deck, the player must apply a permutation and then
mask each card. If parts of the deck have not yet been masked (either due to the
deck just being created or the player adding a card to the deck), the player knows
what card has been masked to what value, i.e. it is privately masked. Therefore,
it is often the case that the deck must be re-masked by all other players to ensure
it is publicly masked.

Also, the mask-shuffle operation includes a verification stage to ensure the
mask-shuffle has been performed correctly, i.e. the resulting deck is semantically
the same as the initial deck. This is done using an honest verifier zero-knowledge
proof, as in Figure 1.

For the purposes of this proof, it is necessary to keep track of all the permu-
tations and Rs used during the initial masking of D to form D′. However, once
the mask-shuffle has been verified as correct they may be discarded. Note that
the chance of cheating has been reduced to 1

2s , so s should be suitably large to
satisfy all parties.

Splitting the deck. Splitting a deck means that a player moves x cards from
the top of the deck to the bottom, maintaining the order of the removed cards.
This is a similar operation to shuffling the deck, in that a permutation can be
used to represent the split. However, the proof needs to be extended in order to
show that a split has occurred and not a regular shuffle. The proof is similar to
the honest verifier zero knowledge proof used for shuffling the deck, on noticing
that a split followed by a split is simply another split. Figure 2 shows the protocol
in more detail.

Drawing a card from the deck. This operation is equivalent to privately
opening a masked card. In this case, the player broadcasts to all players which
card he is going to draw. The card is then privately opened once all players have
agreed to share enough information to do so. In some instances a player might
be restricted to drawing only from the top of the stack. As each player has a
copy of the stack this would be possible. Note that if a player has just placed a
card on the stack, the player who takes this card will be letting the other player
know what card is in his hand. This is acceptable as it would be true in a real
game of cards. However, the player who draws this card should re-mask his hand
if he ever intends to discard a card. This prevents the other player knowing when
he has discarded the card given to him. Discarding cards is considered later.

Discarding a card from hand. A players hand is made up of a series of masked
cards which they know the decryption of. However, there are some times when
an opponent knows what card you are holding at a certain point (for example,
passing cards in Hearts). In this case, the player must always mask-shuffle his
hand whenever he intends to discard a card from it. For example, if a player
wants to insert a card from his hand into the deck, he must first discard this
card and then insert it into the deck. This operation ensures that no information
about a players hand is revealed.
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Alice Bob
A permutation σ is applied to the
deck D, and each element is masked
to create D′ such that

D′ = Eh(σ(D); R).

Alice publishes the mask-shuffled
deck D′

Bob chooses a security parameter s
and sends this to Alice.

Alice generates a set of permutations
{σ′

1, . . . , σ
′
s} and sends D′′

i to Bob
where

D′′
i = Eh(σ′

i(D
′); Ri).

Bob chooses a random subset of X ⊂
{D′′

1 , . . . , D′′
s } and sends this to Al-

ice.

For all D′′
i ∈ X, Alice publishes

σ′
i, Ri

otherwise she publishes

σ ◦ σ′
i, R

′
i

where R′
i are the masking values used

to mask D′′
i from D. These later val-

ues should be easily computable from
R and Ri

Bob verifies that Alice has supplied
the correct masking values and per-
mutations to go from D′ to D′′

i if
D′′

i ∈ X or from D to D′′
i if D′′

i �∈ X.

Fig. 1. Mask-Shuffling the Deck

Rule control. The use of these set tests allow for rule control that are not
available in real card games. For example, in whilst style games such as Hearts
and Bridge, a player must “Follow Suit” whenever possible. A cheating player
could choose to not follow suit for his own advantage. Although the player would
discovered to be cheating at the end of the game, it would be preferable to
discover the player to be cheating earlier.

By using the protocol of Cramer, Damg̊ard and Schoenmakers [5] a player
can always prove when playing a card that it comes from a given set. Hence,
one can make sure that players follow rules, such as following suit, as the game
progresses.
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Alice Bob
A split S is applied to the deck D,
and each element is masked to create
D′ such that

D′ = Eh(S(D); R).

Bob chooses a security parameter s
and sends this to Alice.

Alice generates a further set of
masked splits {S′

1, . . . , S
′
s} and sends

D′′
i to Bob where

D′′
i = Eh(S′

i(D
′); Ri).

Bob chooses a random subset of X ⊂
{D′′

1 , . . . , D′′
s } and sends this to Al-

ice.

For all D′′
i ∈ X, Alice publishes

S′
i, Ri

otherwise she publishes

S ◦ S′
i, R

′
i

where R′
i are the masking values used

to mask D′′
i from D. These later val-

ues should be easily computable from
R and Ri

Bob verifies that Alice has supplied
the correct masking values and per-
mutations to go from D′ to D′′

i if
D′′

i ∈ X or from D to D′′
i if D′′

i �∈ X.

Fig. 2. Splitting the Deck

Leaving the game. Although new players are unable to enter the game, players
are able to leave the game whenever they wish. In order to do so, any cards that
the player has in their hand must either be returned to the deck or opened and
discarded (depending on the rules of the game). Then, each remaining player
mask-shuffles the deck and their hands. Once this has been done, the departing
player reveals their secret key and verifies it to be correct. This allows all the
remaining cards to still be decrypted despite a player not being present. Note
that it is not generally possible for the player to re-enter the game once they
have left, however for our discrete logarithm based VTMF below we shall show
that this is possible.
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5 Instantiations of VTMF’s

We now present two examples of a VTMF suitable for use in our card protocols.
The first is based on the ElGamal encryption scheme whilst the second is based
on Paillier’s system [13]. Before presenting the instantiations we require the
following sub-protocols, both of which are honest-verifier zero-knowledge and
possess the “special soundness” property of [5].

Proof of Knowledge of Equality of Discrete Logarithms
The following protocol, due to Chaum and Pedersen [4], provides a proof, that if
the verifier is given x = gα and y = hβ then the prover knows α and that α = β,
where g and h have order q.

– The prover sends the commitment (a, b) = (gω, hω) to the verifier, for some
random value ω ∈ Zq.

– The verifier sends back a random challenge c ∈ Zq.
– The prover responds with r = ω + αc (mod q).
– The verifier accepts the proof if and only if he verifies that gr = axc and

hr = byc.

We shall denote this protocol by CP (x, y, g, h; α).

Proof of nth residuosity modulo n2

The following protocol, due to Damg̊ard and Jurik [8], provides a proof that a
value u ∈ Zn2 is a perfect nth power and that the prover knows an nth root v.

– The prover sends the commitment a = rn (mod n2) for some random value
r ∈ Zn2 .

– The verifier sends back a random challenge c ∈ Zn.
– The prover responds with z = r · vc (mod n2).
– The verifier accepts the proof if and only if zn = a · uc (mod n2).

We shall denote this protocol by DJ(n, u; v).

When we apply these protocols the random challenge c will be created from
hashing the commitment and the public input values, thus making the protocol
non-interactive. In such a situation we also denote the transcript of the proofs
by CP (x, y, g, h; α) and DJ(n, u; v).

5.1 Discrete Logarithm Based VTMF

The parties first agree on a finite abelian group G in which the Decision Diffie–
Hellman assumption is hard. The users agree on a generate g ∈ G of order q and
set

M = G, R = Zq and C = G × G.
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Key Generation Protocol
Each player generates a random private key xi ∈ Zq and publishes hi = gxi . The
public key h is formed from

h =
l∏

i=1

hi.

Verifiable Masking Protocol
The verifiable masking protocol is given by the ElGamal encryption operation

(m, r) −→ (c1 = gr, c2 = hr · m).

The value (c1, c2) is published and is accompanied by the proof

CP (c1, c2/m, g, h; r).

That this encryption function is semantically secure under the Decision Diffie-
Hellman assumption is an undergraduate exercise.

Verifiable Re-masking Protocol
Given a ciphertext (c1, c2) this is re-masked by computing

((c1, c2), r)) −→ (c′
1 = c1 · gr, c′

2 = c2 · hr).

The value (c′
1, c

′
2) is now published and accompanied by the proof

CP (c′
1/c1, c

′
2/c2, g, h; r).

Verifiable Decryption Protocol
Given (c1, c2), user i publishes di = cxi

1 along with a proof CP (di, hi, c1, g; xi).
Given these values any player can decrypt (c1, c2) by computing

m = c2/

l∏
i=1

di.

Joining The Game
Using this VTMF a player may join an existing card game by generating a
private key xl+1 and public commitment hl+1 as above. The public key h for the
game is then replaced by

h′ = h · hl+1.

Then each card c = (c1, c2) is masked by the new player, under the new public
key, by setting

c′ = (c′
1, c

′
2) = (c1, c

xl+1
1 · c2)

along with a proof CP (hl+1, c
′
2/c2, g, c1; xl+1).
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5.2 Factoring Based VTMF

Our factoring based assumption will make use of the Paillier probabilistic
encryption function [13], which is known to be semantically secure against
passive attacks under the n-th residuosity assumption.

Key Generation Protocol
All parties execute a protocol such as that of Boneh and Franklin, see [2,3], to
generate a shared RSA modulus n = p · q, where each player only knows the
value of (pi, qi) where p =

∑l
i=1 pi and q =

∑l
i=1 qi. The value n is published

and the users generate a share of φ = (p − 1)(q − 1) by setting

xi =
{

n − (p1 + q1) − 1 If i = 1,
−(pi + qi) If i ≥ 2.

Note that φ =
∑l

i=1 xi. The uses then commit to the value xi by publishing
hi = gxi (mod n2), where g = 1 + n. We then set publically

h =
m∏

i=1

hi − 1 (mod n2) = gφ − 1 (mod n2).

Verifiable Masking Protocol
The verifiable masking protocol is given by Paillier’s encryption operation

(m, r) −→ c = gmrn (mod n2).

The value c is published and is accompanied by the proof DJ(n, c/gm; r).

Verifiable Re-masking Protocol
Given a ciphertext c this is re-masked by computing

(c, r) −→ c′ = rnc (mod n2).

The value c′ is now published and accompanied by the proof DJ(n, c′/c; r).

Verifiable Decryption Protocol
Given c, user i publishes the value di = cxi (mod n2) along with a proof
CP (di, hi, c, g; xi). Given these values any player can decrypt c by computing

1
h

((
l∏

i=1

di

)
− 1 (mod n2)

)
(mod n) =

cφ − 1 (mod n2)
gφ − 1 (mod n2)

(mod n)

= m.

6 Conclusion

We have introduced the concept of a VTMF and shown how this can be used to
implement a secure multi-party card game with arbitrary number of players and
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no trusted centre. The number of bits to represent each card in our system is
significantly smaller than in previous schemes. We have then gone on to show how
a VTMF can be implemented either under a discrete logarithm type assumption
or under a factoring based assumption.

The authors would like to thank the referee’s for very useful comments which
improved the readability of the paper. The authors would also like to thank F.
Vercauteren for useful conversations whilst the work in this paper was carried
out.
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