

Algorithmen für drahtlose Netzwerke

Lokalisation

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

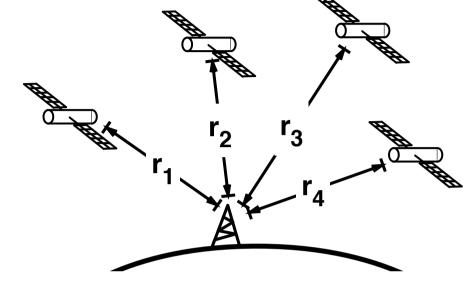
Lokalisierung

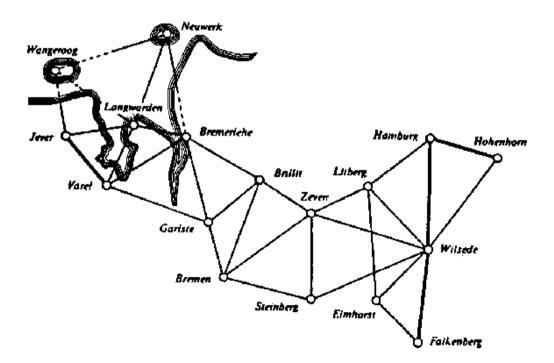
- Bestimmung der physikalischen Position oder des logischen Orts
 - Koordinatensystem
 - Referenzpunkte
 - Absolute oder relative Koordinaten
- Parameter
 - Zentrale oder verteilte Berechnung
 - Einsatzbereich

- Innenbereich,
 Außenbereich, Global
- Informationsquellen
- Metrik
 - Genauigkeit
 - Präzision
 - Andere Kosten

Informationsquellen

Nachbarschaftsinformation


- Reichweite liefert grobe Ortsinformation
 - z.B. GSM/UMTS-Zelle, WLAN-IDs


▶ Triangulisierung und Trilateration

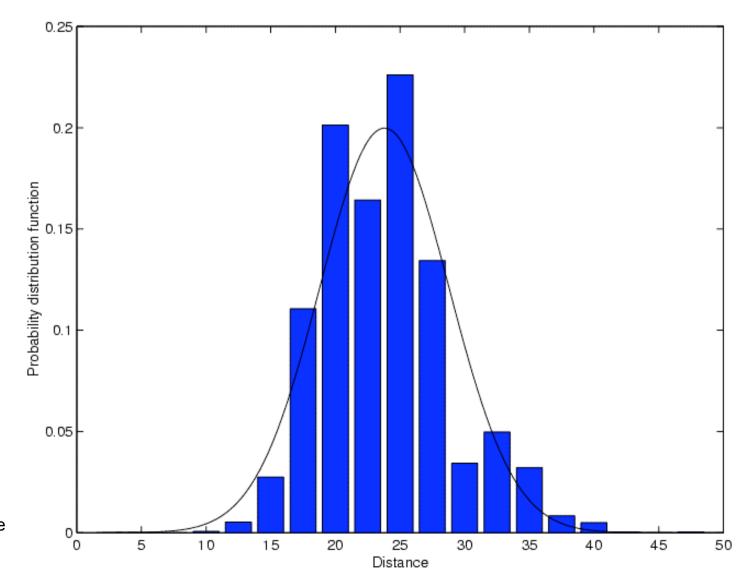
- Winkelunterschiede
- Distanzmessung

Umgebungsanalyse

 Charakteristische "Handschrift" durch Funkbedingungen in der Umgebung

Algorithmen für Drahtlose Netzwerke Prof. Dr. Christian Schindelhauer

RSSI


- Received Signal Strength Indicator
 - Verwendung des Pfadverlusts bei bekannter Sendestärke
 - Messung des Empfangsignals

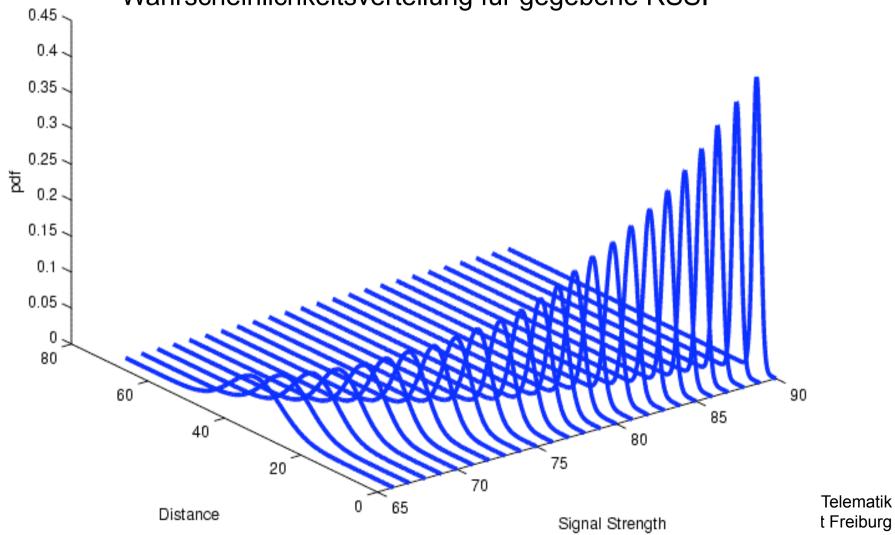
$$P_{\text{recv}} = c \frac{P_{\text{tx}}}{d^{\alpha}} \Leftrightarrow d = \sqrt[\alpha]{\frac{cP_{\text{tx}}}{P_{\text{recv}}}}$$

Problem: Hohe Fehlerrate

RSSI

- Problem: hohe Fehlerrate
 - Wahrscheinlichkeitsverteilung für gegebenen RSSI und Sendestärke

Algorithmen für Drahtlose Netzwe Prof. Dr. Christian Schindelhauer


RSSI

Problem: hohe Fehlerrate

Algorithm

Prof. Dr. (

• Wahrscheinlichkeitsverteilung für gegebene RSSI

Time of Arrival

Time of arrival (ToA)

- Übertragungszeit wird gemessen
- ergibt sich aus Quotient:
 - Übertragungszeit = Entfernung/Signalgeschwindigkeit

Problem:

- Positionen von Messpunkten (Anker) müssen bekannt sein
- Genaue Zeitmessung
- Uhrensynchronisierung
- Relative Zeitmessung erfordert weiteren Anker

Time Difference of Arrival (ToA)

- Zwei verschiedene Signale mit unterschiedlicher Übertragungsgeschwindigkeit
 - Beispiel: Ultraschall und Funksignal
 - Hauptkomponente Schallgeschwindigkeit
 - Berechnung der unterschiedlichen Ankunftszeiten ergibt Distanz
- Probleme:
 - Kalibrierung
 - Spezielle Hardware notwendig

Bestimmung von Winkeln

- Optische Winkelmessung
 - nur manuell möglich
- Laserstrahlen
 - größtmögliche Genauigkeit
 - Ansteuerung durch drehende Spiegel
- Gerichtete Antennen
 - Drehbar gelagerte Richt- oder Parabolantennen
- Smart Antennae (Antennen-Array)
 - (noch) geringe Präzision (bis zu 1-2 Grad)

Grobe Lokalisierungstechniken

Hop-Distanz

- in dichten Ad-Hoc-Netzwerken oder drahtlosen Sensor-Netzen
- ungefähre Position durch Anzahl der Hops zu Ankerpunkten

Überlappende Verbindungen

 Position ist im Schnittpunkt der empfangenen Sendekreise

Punktlokalisierung im Dreieck

- Bestimmung von Dreiecken von Ankerpunkten
 - in welchem ein Punkt liegt
- Überlappung liefert ungefähre Position

Trilateration

- Angenommen die Distanz zu drei Punkten ist gegeben
- Gleichungssystem
 - (x_i,y_i): Koordinaten eines Ankerpunkts i,
 - r_i Distanz zum Ankerpunkt i
 - (x_u, y_u): unbekannte Koordinaten eines Knoten

$$(x_i - x_u)^2 + (y_i - y_u)^2 = r_i^2$$
 for $i = 1, ..., 3$

- Problem: Quadratisches Gleichungssystem
 - Umformungen führen zu lineares Gleichungssystem

Trilateration

Gleichungssystem

$$(x_i - x_u)^2 + (y_i - y_u)^2 = r_i^2$$
 for $i = 1, ..., 3$

Umformung

$$(x_1 - x_u)^2 - (x_3 - x_u)^2 + (y_1 - y_u)^2 - (y_3 - y_u)^2 = r_1^2 - r_3^2$$
$$(x_2 - x_u)^2 - (x_2 - x_u)^2 + (y_2 - y_u)^2 - (y_2 - y_u)^2 = r_2^2 - r_3^2$$

▶ Ergibt:

$$2(x_3 - x_1)x_u + 2(y_3 - y_1)y_u = (r_1^2 - r_3^2) - (x_1^2 - x_3^2) - (y_1^2 - y_3^2)$$
$$2(x_3 - x_2)x_u + 2(y_3 - y_2)y_u = (r_2^2 - r_2^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2)$$

Trilateration als lineares Gleichungssystem

Umformung als Gleichungssystem

$$2\begin{bmatrix} x_3 - x_1 & y_3 - y_1 \\ x_3 - x_2 & y_3 - y_2 \end{bmatrix} \begin{bmatrix} x_u \\ y_u \end{bmatrix} = \begin{bmatrix} (r_1^2 - r_3^2) - (x_1^2 - x_3^2) - (y_1^2 - y_3^2) \\ (r_2^2 - r_2^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2) \end{bmatrix}$$

Beispiel:

•
$$(x_1, y_1) = (2,1), (x_2, y_2) = (5,4), (x_3, y_3) = (8,2),$$

•
$$r_1 = 10^{1/2}$$
, $r_2 = 2$, $r_3 = 3$

$$2\begin{bmatrix} 6 & 1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} x_u \\ y_u \end{bmatrix} = \begin{bmatrix} 64 \\ 22 \end{bmatrix}$$
$$\rightarrow (\mathbf{x}_{\mathsf{u}}, \mathbf{y}_{\mathsf{u}}) = (5, 2)$$

Einige verfügbare Lokalisierungsysteme

Satellitengestützt

- NAVSTAR-GPS
- GLONASS
- Galileo

Landfunkstellen

- LORAN-C
- Mobilfunkzellen
- WLAN-Identifikation

Verbesserungsmöglichkeiten

- Kombination verschiedener Methoden
 - Magnetfeld
 - Luftdruck
 - Echolot
- Kalman-Filter
 - Erweiterung von Markov-Filter
- Berücksichtigung der Messwerte von Bewegungssensoren
 - Gyroskope
 - Beschleunigungsensoren

Algorithmen für drahtlose Netzwerke

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

