

Algorithmen für drahtlose Netzwerke

Drahtlose Sensornetze – Besondere Probleme

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

WSN Anwendungsarten

- Interaktionstypen zwischen Quelle und Senken
- Ereigniserkennung
 - Knoten erkennen Ereignisse
 - Bericht an Senken
- Periodische Messung
 - Umweltdatenerfassung, Tracking
- Approximation einer Funktion
 - Sensornetz approximiert eine Funktion der Umweltdaten
 - Z.B. Temperaturkarte

WSN Anwendungsarten

Grenzerfassung

- Finde Grenze oder eine andere Struktur
- z.B. Brandgrenze oder Nullgradgrenze

Tracking

- Positionserfassung oder Verfolgung eines Zielobjekts
- z.B. Eindringling, seltenes Tier

Platzierung der Knoten

- Wie werden die Sensoren platziert?
- Abwurf aus Flugzeug
 - Random deployment
 - Ergibt uniforme zufällige Verteilung
 - Theoretisch häufig betrachtet, in der Praxis selten
- Geplante Platzierung
 - Regular deployment
 - Richtet sich nach der Aufgabenstellung

Platzierung der Knoten

Mobile Sensorknoten

- können sich aktiv bewegen
 - z.B. um Platzierungsort zu verbessern
- passiver Transport
 - Wind, Wasser, parasitär
- Suche nach interessanten Gebiet

Unterhalt des Netzwerks

- Ist es möglich die Sensorknoten zu versorgen
 - Batterieaustausch
 - Austausch defekter Geräte
 - Softwareupdate
 - Notwendig?
- Energieversorgungsoptionen
 - Begrenzt
 - Mit Stromversorgung
 - aus Netz
 - aus der Umwelt, z.B. Solarzellen

Dienst eines WSN

- Nicht (nur) Nachrichtendienst
- Anwendung steht im Vordergrund, z.B. die Umweltmessung
- Geographische Erfassung ist natürlich
- Andere Netzwerke sehen Geographie als Hinderniss

Quality of service

anders als in herkömmlichen Netzwerken

Fehlertoleranz

- Knotenausfall muss kompensiert werden können
 - leere Batterien
 - Zerstörung

Lebensdauer

 Lebensdauer des Netzwerks wichtiger als eines Knotens

Skalierbarkeit

- Große Knotenanzahl möglich
- Dichte kann stark variieren
 - Anwendung bestimmt Knotendichte
- Programmierbarkeit
 - Reprogrammierbarkeit von Knoten im Feldversuch kann notwendig sein
 - d.h. Programmierbarkeit über Funk

Wartbarkeit

- WSN muss sich an Veränderung anpassen
- Selbststeuerung und Selbstüberwachung
- Verlust von Knoten und (Wieder-) Aufnahme von Knoten muss möglich sein

Notwendige Mechanismen

Multi-Hop Routen

Erreichbarkeit, Energieeffizienz

Energie-Effizienz

Kommunikation, Berechnung, Sensoren, Aktuatoren

Selbstkonfiguration

Manuelle Konfiguration nicht möglich

Kooperation und Berechnung im Netzwerk

- Knoten im Netzwerk arbeiten am gemeinsamen Ziel
- Verarbeitung der Daten im Netzwerk kann Effizienz erhöhen

Notwendige Mechanismen

- Datenzentriertes Netzwerk (Data centric networking)
 - Im Zentrum stehen die Daten und nicht die Knoten-IDs (id-centric networking)
 - Erhöht die Effizienz
- Lokalität
 - Soweit möglich Verarbeitung der Daten lokal
- Betrachtung von Trade-Offs
 - Z.B. Energie und Genauigkeit, Latenz und Effizienz

Algorithmen für drahtlose Netzwerke

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

