

Algorithmen für drahtlose Netzwerke

Drahtlose Sensornetze: Energy Harvesting

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

Literatur Energy Harvesting

- Kansal, Hsu, Zahedi, Srivastava
 - Power management in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst. 6, 4, Sep. 2007

Motivation

Energy harvesting

- kann WSNs von Batterien befreien
- potentiell unendliche Laufzeit
- Arbeitsrate kann reduziert werden

Beispiel

Solarenergie nur bei Tageslicht verfügbar

Energiekonzept

- für gesamten Zeitraum notwendig
- regelt Zusammenspiel aus Schlafphase, Datenrate und Kurzzeit-Energie-Speicher

Harvesting Paradigma

- Typische Zielssetzung in Batterie-WSNs
 - Minimiere Energieverbrauch
 - Maximiere Lebensdauer
- Zielsetzung Harvesting-WSNs
 - Kontinuierlicher Betrieb
 - d.h. unendliche Lebensdauer
 - genannt: Energie-neutraler Betrieb

Mögliche Quellen

- Piezoelektrischer Effekt
 - Mechanischer Druck wird in Spannung umgewandelt
- Thermoelektrischer Effekt
 - Temperaturunterschied mit Leitern mit verschiedenen Wärmekoeffizient
- Kinetische Energie
 - z.B. Armbanduhren
- Mikrowindturbinen
- Antennen
- **▶** Chemische Quellen, ...

Unterschiede zur Batterie

Zeitabhängig

- Betriebsform muss mit der Zeit angepasst werden
- Mitunter nicht vorhersagbar

Raumabhängig

- Verschiedene Knoten bekommen unterschiedliche Energie
 - Lastbalancierung notwendig
- Versorgung bricht nicht ab
- Effizienzgedanken
 - Ausnutzung der Energie für maximale Performanz
 - Unnötiges Energiesparen ergibt Opportunitätskosten

Ansätze ohne Power-Management

Ohne Energiepuffer

- Harvesting-Hardware muss bei minimaler Energieabgabe die maximal notwendige Energie erzeugen
- Nur in speziellen Situationen möglich
 - z.B. Lichtschalter,

Mit Energiepuffer

Power Management System notwendig

Power Management System

Ziel:

 Bereitstellung der notwendigen Energie aus externer Energiequelle und Energiepuffer

Energiequellen

- Unkontrolliert und vorhersagbar
 - z.B. Tageslicht
- Unkontrolliert und unverhersagbar
 - z.B. Wind
- Kontrollierbar
 - Energie wird erzeugt, wenn notwendig
 - z.B. Lichtschalter, Dynamo am Fahrrad
- Teilweise kontrollierbar
 - Energie ist nicht immer verfügbar
 - z.B. Funkquelle im Raum mit wechselnden Emfang

Harvesting Theorie

- ▶ P_s(t): Energie aus der Quelle zum Zeitpunkt t
- Pc(t): Energiebedarf zum Zeitpunkt t
- Ohne Energiespeicher:
 - $P_s(t) \ge P_c(t)$: Knoten arbeitet
- Idealer Energiespeicher
 - Kontinuierlicher Betrieb, falls

$$\int_0^T P_c(t)dt \le \int_0^T P_s(t)dt + B_0 \quad \forall \quad T \in [0, \infty)$$

- wobei B₀ die Anfangsenergie im Speicher ist
- Energiespeicher hat keinen Verlust, speichert beliebig

Harvesting Theorie

- ▶ P_s(t): Energie aus der Quelle zum Zeitpunkt t
- Pc(t): Energiebedarf zum Zeitpunkt t
- Sei $[x]^+ = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$
- Nicht-Idealer Energiespeicher
 - Kontinuierlicher Betrieb, falls

$$B_0 + \eta \int_0^T [P_s(t) - P_c(t)]^+ dt - \int_0^T [P_c(t) - P_s(t)]^+ dt - \int_0^T P_{leak}(t) dt \ge 0$$

- B₀ die Anfangsenergie im Speicher ist
- η: Energieeffizienz des Speichers
- P_{leak}(t): Energieverlust des Speichers

Harvesting Theorie

- ▶ P_s(t): Energie aus der Quelle zum Zeitpunkt t
- ▶ P_c(t): Energiebedarf zum Zeitpunkt t
- Sei $[x]^+ = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$
- Nicht-Idealer Energiespeicher mit beschränkter Aufnahme B
 - Kontinuierlicher Betrieb, falls

$$B_0 + \eta \int_0^T [P_s(t) - P_c(t)]^+ dt - \int_0^T [P_c(t) - P_s(t)]^+ dt - \int_0^T P_{leak}(t) dt \ge 0$$

- B₀ die Anfangsenergie im Speicher ist
- η: Energieeffizienz des Speichers
- P_{leak}(t): Energieverlust des Speichers
- zusätzlich:

$$B_0 + \eta \int_0^T [P_s(t) - P_c(t)]^+ dt - \int_0^T [P_c(t) - P_s(t)]^+ dt - \int_0^T P_{leak}(t) dt \le B$$

Modellierung gutartiger Energie-Quellen

▶ Falls die Energiequelle P_s(t) regelmäßig vorkommt, dann erfüllt sie folgende Gleichungen

$$\int_{\tau}^{\tau+T} P_{\mathbf{s}}(t)dt \leq \rho_{\mathbf{1}}^{T} + \sigma_{1}$$

$$\int_{\tau}^{\tau+T} P_{\mathbf{s}}(t)dt \geq \rho_{\mathbf{1}}^{T} - \sigma_{2}$$

Fig. 2. Solar energy based charging power recorded for 9 days

Modellierung gutartigen Energie-Bedarfs

 Gutartiger Energiebedarf P_c(t) erfüllt folgende Gleichungen

$$\int_{\tau}^{\tau+T} P_{\mathbf{c}}(t)dt \leq \rho_{\mathbf{2}}^{T} + \sigma_{\mathbf{3}}$$

$$\int_{\tau}^{\tau+T} P_{\mathbf{c}}(t)dt \geq \rho_{\mathbf{2}}^{T} - \sigma_{\mathbf{4}}$$

Energieneutralität bei gutartigen Quellen

Einsetzen in die nichtideale Energiequellengleichung:

$$B_0 + \eta \cdot \min\{\int_T P_s(t)dt\} - \max\{\int_T P_c(t)dt\} - \int_T P_{leak}(t)dt \ge 0$$

$$\Rightarrow B_0 + \eta(\rho_1 T - \sigma_2) - (\rho_2 T + \sigma_3) - \rho_{leak} T \ge 0$$

Gleichung muss für T=0 gelten

$$B_0 \ge \eta \sigma_2 + \sigma_3$$

Diese Bedingung auch für alle T gelten

$$\eta \rho_1 - \rho_{leak} \ge \rho_2$$

 Wenn diese Gleichungen gelten, ist ein kontinuierlicher Betrieb gewährleistet

Notwendiger Energiespeicher bei gutartigen Quellen

Einsetzen in die zweite Gleichung

$$B_0 + \eta \cdot \max\{\int_T P_s(t)dt\} - \min\{\int_T P_c(t)dt\} - \int_T P_{leak}(t)dt \le B$$

$$\Rightarrow B_0 + \eta(\rho_1 T + \sigma_1) - (\rho_2 T - \sigma_4) - \rho_{leak} T \le B$$

Gleichung muss für T=0 gelten

$$B_0 + \eta(\sigma_1 - \sigma_4) \le B$$

► Einsetzen von $B_0 \ge η\sigma_2 + σ_3$ liefert

$$B \ge \eta(\sigma_1 + \sigma_2) + \sigma_3 - \sigma_4$$

▶ Für $T \rightarrow \infty$ ergibt sich

$$\eta \rho_1 - \rho_{leak} \le \rho_2$$

Diese Bedingung kann ohne Probleme verletzt werden

Energieneutraler Betrieb

Theorem

- Bei gutartigen Energiequellen kann Energieneutralität erfüllt werden, wenn die folgenden Bedingungen gelten:
 - $\rho_2 \le \eta \rho_1 \rho_{leak}$
 - B $\geq \eta \sigma_1 + \eta \sigma_2 + \sigma_3$
 - $B_0 \ge \eta \sigma_2 + \sigma_3$

Fig. 2. Solar energy based charging power recorded for 9 days

Parameter	Value	Units
$ ho_1$	23.6	mW
σ_1	1.4639×10^3	J
σ_2	1.8566×10^{3}	J

Weitere Überlegungen

Das Verhalten von Energiequellen kann gelernt werden

- Dadurch kann die zur Verfügung stehende Energie berechnet werden
- Die Aufgabe kann an die Energieversorgung angepasst werden

Dadurch

- Knoten mit besserer Energiesituation k\u00f6nnen Routing \u00fcbernehmen
- Messwerte können evtl. ausdünnen, versiegen aber nicht

Algorithmen für drahtlose Netzwerke

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

