

Algorithmen für drahtlose Netzwerke

Drahtlose Sensornetze: Energy Harvesting

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

Literatur Energy Harvesting

- Kansal, Hsu, Zahedi, Srivastava
 - Power management in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst. 6, 4, Sep. 2007

Motivation

Energy harvesting

- kann WSNs von Batterien befreien
- potentiell unendliche Laufzeit
- Arbeitsrate kann reduziert werden
- Beispiel
 - Solarenergie nur bei Tageslicht verfügbar
- Energiekonzept
 - für gesamten Zeitraum notwendig
 - regelt Zusammenspiel aus Schlafphase, Datenrate und Kurzzeit-Energie-Speicher

Harvesting Paradigma

- Typische Zielssetzung in Batterie-WSNs
 - Minimiere Energieverbrauch
 - Maximiere Lebensdauer

Zielsetzung Harvesting-WSNs

- Kontinuierlicher Betrieb
 - d.h. unendliche Lebensdauer
- genannt: Energie-neutraler Betrieb

Mögliche Quellen

Piezoelektrischer Effekt

- Mechanischer Druck wird in Spannung umgewandelt
- Thermoelektrischer Effekt
 - Temperaturunterschied mit Leitern mit verschiedenen Wärmekoeffizient
- Kinetische Energie
 - z.B. Armbanduhren
- Mikrowindturbinen
- Antennen
- Chemische Quellen, ...

Unterschiede zur Batterie

> Zeitabhängig

- Betriebsform muss mit der Zeit angepasst werden
- Mitunter nicht vorhersagbar
- Raumabhängig
 - Verschiedene Knoten bekommen unterschiedliche Energie
 - Lastbalancierung notwendig
- Versorgung bricht nicht ab
- Effizienzgedanken
 - Ausnutzung der Energie für maximale Performanz
 - Unnötiges Energiesparen ergibt Opportunitätskosten

Ansätze ohne Power-Management

Ohne Energiepuffer

- Harvesting-Hardware muss bei minimaler Energieabgabe die maximal notwendige Energie erzeugen
- Nur in speziellen Situationen möglich
 - z.B. Lichtschalter,
- Mit Energiepuffer
 - Power Management System notwendig

Power Management System

- ► Ziel:
 - Bereitstellung der notwendigen Energie aus externer Energiequelle und Energiepuffer

Energiequellen

- Unkontrolliert und vorhersagbar
 - z.B. Tageslicht
- Unkontrolliert und unverhersagbar
 - z.B. Wind
- Kontrollierbar
 - Energie wird erzeugt, wenn notwendig
 - z.B. Lichtschalter, Dynamo am Fahrrad
- Teilweise kontrollierbar
 - Energie ist nicht immer verfügbar
 - z.B. Funkquelle im Raum mit wechselnden Emfang

Harvesting Theorie

- Ps(t): Energie aus der Quelle zum Zeitpunkt t
- Pc(t): Energiebedarf zum Zeitpunkt t
- Ohne Energiespeicher:
 - $P_s(t) \ge P_c(t)$: Knoten arbeitet
- Idealer Energiespeicher
 - Kontinuierlicher Betrieb, falls

$$\int_0^T P_c(t)dt \le \int_0^T P_s(t)dt + B_0 \quad \forall \quad T \in [0,\infty)$$

- wobei B₀ die Anfangsenergie im Speicher ist
- Energiespeicher hat keinen Verlust, speichert beliebig

Harvesting Theorie

- Ps(t): Energie aus der Quelle zum Zeitpunkt t
- Pc(t): Energiebedarf zum Zeitpunkt t

• Sei
$$[x]^+ = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$$

- Nicht-Idealer Energiespeicher
 - Kontinuierlicher Betrieb, falls $B_0 + \eta \int_0^T [P_s(t) - P_c(t)]^+ dt - \int_0^T [P_c(t) - P_s(t)]^+ dt - \int_0^T P_{leak}(t) dt \ge 0$
 - B₀ die Anfangsenergie im Speicher ist
 - η: Energieeffizienz des Speichers
 - P_{leak}(t): Energieverlust des Speichers

Harvesting Theorie

- Ps(t): Energie aus der Quelle zum Zeitpunkt t
- Pc(t): Energiebedarf zum Zeitpunkt t
- Sei $[x]^+ = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$
- Nicht-Idealer Energiespeicher mit beschränkter Aufnahme B
 - Kontinuierlicher Betrieb, falls $B_0 + \eta \int_0^T [P_s(t) - P_c(t)]^+ dt - \int_0^T [P_c(t) - P_s(t)]^+ dt - \int_0^T P_{leak}(t) dt \ge 0$
 - B₀ die Anfangsenergie im Speicher ist
 - η: Energieeffizienz des Speichers
 - P_{leak}(t): Energieverlust des Speichers
 - zusätzlich:

$$B_0 + \eta \int_0^T [P_s(t) - P_c(t)]^+ dt - \int_0^T [P_c(t) - P_s(t)]^+ dt - \int_0^T P_{leak}(t) dt \le B$$

Algorithmen für Drahtlose Netzwerke Prof. Dr. Christian Schindelhauer Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg

Modellierung gutartiger Energie-Quellen

 Falls die Energiequelle P_s(t) regelmäßig vorkommt, dann erfüllt sie folgende Gleichungen

200 г

Fig. 2. Solar energy based charging power recorded for 9 days

Algorithmen für Drahtlose Netzwerke Prof. Dr. Christian Schindelhauer

Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg

Modellierung gutartigen Energie-Bedarfs

 Gutartiger Energiebedarf P_c(t) erfüllt folgende Gleichungen

$$\int_{\tau}^{\tau+T} P_{\rm C}(t) dt \leq \rho_2^T + \sigma_3$$
$$\int_{\tau}^{\tau+T} P_{\rm C}(t) dt \geq \rho_2^T - \sigma_4$$

Energieneutralität bei gutartigen Quellen

Einsetzen in die nichtideale Energiequellengleichung:

$$B_0 + \eta \cdot \min\{\int_T P_s(t)dt\} - \max\{\int_T P_c(t)dt\} - \int_T P_{leak}(t)dt \ge 0$$

$$\Rightarrow B_0 + \eta(\rho_1 T - \sigma_2) - (\rho_2 T + \sigma_3) - \rho_{leak}T \ge 0$$

Gleichung muss f
ür T=0 gelten

 $B_0 \ge \eta \sigma_2 + \sigma_3$

Diese Bedingung auch f
ür alle T gelten

 $\eta \rho_1 - \rho_{\text{leak}} \ge \rho_2$

 Wenn diese Gleichungen gelten, ist ein kontinuierlicher Betrieb gewährleistet

Notwendiger Energiespeicher bei gutartigen Quellen

Einsetzen in die zweite Gleichung

$$B_{0} + \eta \cdot \max\{\int_{T} P_{s}(t)dt\} - \min\{\int_{T} P_{c}(t)dt\} - \int_{T} P_{leak}(t)dt \leq B$$

$$\Rightarrow B_{0} + \eta(\rho_{1}T + \sigma_{1}) - (\rho_{2}T - \sigma_{4}) - \rho_{leak}T \leq B$$

$$\Rightarrow B_{0} + \eta(\sigma_{1} - \sigma_{4}) \leq B$$

- Einsetzen von $B_0 \ge \eta \sigma_2 + \sigma_3$ liefert $B \ge \eta(\sigma_1 + \sigma_2) + \sigma_3 - \sigma_4$
- Für $T \rightarrow \infty$ ergibt sich

$$\eta \rho_1 - \rho_{\text{leak}} \le \rho_2$$

Diese Bedingung kann ohne Probleme verletzt werden

Energieneutraler Betrieb

Theorem

- Bei gutartigen Energiequellen kann Energieneutralität erfüllt werden, wenn die folgenden Bedingungen gelten:
 - $\rho_2 \leq \eta \rho_1 \rho_{\text{leak}}$
 - B $\geq \eta \sigma_1 + \eta \sigma_2 + \sigma_3$
 - $B_0 \ge \eta \sigma_2 + \sigma_3$

Parameter	Value	Units
$ ho_1$	23.6	mW
σ_1	1.4639×10^{3}	J
σ_2	1.8566×10^{3}	J

Weitere Überlegungen

- Das Verhalten von Energiequellen kann gelernt werden
 - Dadurch kann die zur Verfügung stehende Energie berechnet werden
 - Die Aufgabe kann an die Energieversorgung angepasst werden
- Dadurch
 - Knoten mit besserer Energiesituation können Routing übernehmen
 - Messwerte können evtl. ausdünnen, versiegen aber nicht

Algorithmen für drahtlose Netzwerke

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

