

Algorithmen für drahtlose Netzwerke

Sicherheit in GSM, UMTS, WEP, WPA und TinySec

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

Sicherheitsanforderungen Mobiltelefone

Netzwerkanbieter

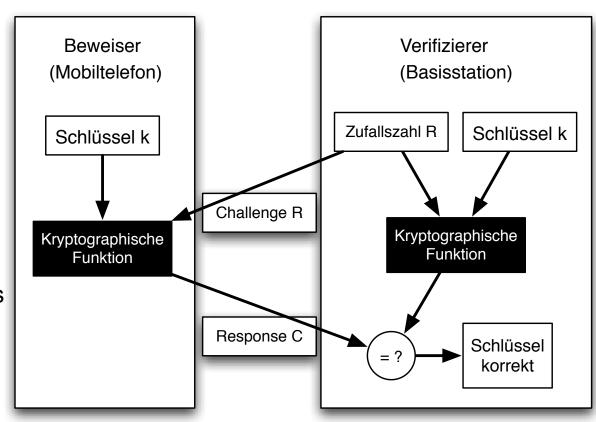
- Authentifizierung des Benutzers
- korrekte Abrechnung, kein Missbrauch
- Effizienz (geringer Overhead)

Benutzersicht

- Vertraulichkeit
- Keine Benutzerprofile
- Verbindung mit der angegebenen Basisstation
- korrekte Abrechnung

Sicherheitsalgorithmen GSM

- SIM-Karte (Smartcard)
 - 128-Bit-Schlüssel
 - Benutzer: PIN und PUK
- Smartcard-basierte Authentifizierung
 - mit nicht standardisierten Algorithmus A3
- Anonymität
 - Verwendung temporärer Identifikationen
- Verschlüsselung zur Basisstation
 - A5/3 (Kasami)-Algorithmus
 - ersetzte unsichere Vorgänger A5/1, A5/2


Challenge-Response-Authentifizierung

Challenge-Response

- Basis-Station sendet Zufallszahl R (Challenge)
- Mobiltelefon
 - berechnet C=A3(K, R)
 - * für Kartenschlüssel K
 - sendet C an Basisstation (Response)
- Basis-Station überprüft Ergebnis

Motivation

- keine geheimen Schlüssel werden übermittelt
- keine Replay-Attacken möglich

Verbesserungen in UMTS

- Verschlüsselung endet nicht mehr in der Basisstation
- Temporäre Kommunikationsschlüssel
 - Regelmäßige Erneuerung
 - in Abhängigkeit von Zeit und Datenmenge
 - Symmetrischer 128-Bit-Schlüssel
- Netz authentifiziert sich gegenüber dem Benutzer
- UMTS verwendet verbesserte, öffentliche, symmetrische Verschlüsselung

Sicherheitsaufgaben im WLAN

Authentifizierung

- der Nutzer oder
- des Geräts
- Schutz der übermittelten Daten
 - gegen Abhören
 - und Verfälschung

Probleme

- Hacker-Software weit verbreitet
- Geräte sind frei programmierbar und weit verbreitet

Wired Equivalent Privacy

Sicherheitsmechanismus für 802.11 WLAN

- gegen Abhören von Nachrichten
- Seit 2001 erhebliche Schwachstellen bekannt

64-Bit-WEP verwendet 40-Bit-Schlüssel

- verwendet symmetrische Strom-Kodierung RC4
- alternativ 128-bit WEP (104 Bit-Schlüssel)
- mit jeweils 24 Bit für Initialisierung

Schwächen

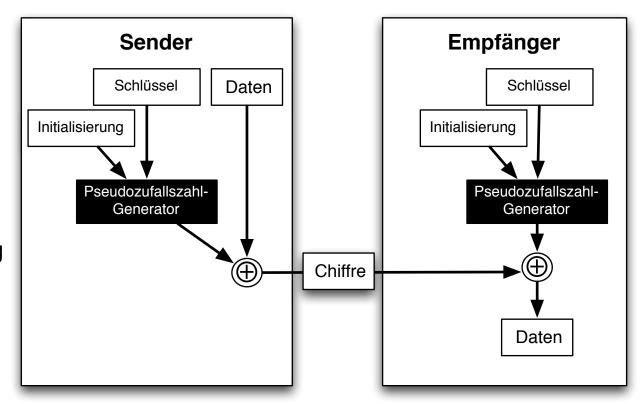
- Keine Nachricht darf sich wiederholen
- Auch für große Schlüssel unsicher
- kein Schlüsselmanagement

Strom-Kodierung

Verschlüsselungs-Algorithmus

- Eingabe als Byte-Strom (Folge von Bytes)
- Bitweises Xor mit Pseudozufallsfolge

Entschlüsselung


 Bitweises Xor mit selber Pseudozufallsfolge

Wichtig:

- Austausch der Initialisierung des Zufallsgenerators
- Synchrones Arbeiten

Beispiel:

Rivest Code 4 (RC-4)

WPA

- WPA: Wi-Fi Protected Access
 - Sichere Verbesserung gegenüber WEP
 - Verwendet Authentifizierungsserver
 - Extensible Authenticiation Protocol (EAP)
 - oder pre-shared key mode (PSK) f
 ür kleinere Netze
- Verwendet RC4-Stromkodierung mit 128 bit keys
 - Dynamischer Schlüsselwechsel mittels Temporal Key Integrity Protocol (TKIP)
- Statt CRC bessere Datenintegrität durch Message Integrity Code (MIC)
- Frame-Zähler verhindert Replay-Angriffe

Weitere Maßnahmen in 802.11

- Abschottung des unsicheren WLAN von drahtgebundenen Intranet-LAN
- Weitere Sicherheitsschichten in höheren Schichten
 - IPSec oder SSL oder SSH
- Zusätzliche Authentifizierung
 - z.B. VPN (Virtual Private Network)
- Zulassung nur von registrierten MAC-Adressen
- Unterdrückung des Netzwerknames
- In Zukunft:
 - Verwendung von AES statt RC4

Sicherheitsrisiken in Drahtlosen Sensornetzen

- Abhören von Nachrichten
 - Bruch der Vertraulichkeit
- Verfälschen und Einfügen falscher Pakete
 - Zugriffskontrolle
 - Integrität
- Störung der Kommunikation
 - Wiedervorspielen von alten Nachrichten (Replay-Attacke)
 - Denial of Service

TinySec

- Karlof, Sastr, Wagner
 - TinySec: A Link Layer Security Architecture for Wireless Sensor Networks, SenSys 2004
- Sicherheitsschicht für drahtlose Sensornetze
- Ziele
 - Zugriffskontrolle
 - Integrität von Nachrichten
 - Vertraulichkeit
 - Transparenz f
 ür Anwendungen und Programmierer

TinySec-Design

- Ein gemeinsamer globaler symmetrischer kryptographischer Schlüssel
- Verschlüsselung in der Verbindungsschicht (Link layer)
 - Verschlüsselung und Schutz der Integrität
 - Transparenz für Anwendungen
- Verwendung von symmetrischen blockweisen Verschlüsselungen
 - wahlweise DES, AES, Skipjack, RC5
 - erzeugt auch Nachrichtenunterschriften
 - Message Authentification Codes (MAC)

Diskussion TinySec

TinySec ermöglicht

- Zugriffskontrolle
- Integrität der Nachrichten
- Vertraulichkeit

TinySec verhindert nicht

- Störung
- Kompromittierung eines Knoten oder Schlüssels
- Replay-Attacke
- Denial of service

Algorithmen für drahtlose Netzwerke

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

