Algorithm Theory
4 Randomized Algorithms: Quicksort

Christian Schindelhauer
Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08
Randomized algorithms

- Classes of randomized algorithms
- Randomized Quicksort
- Randomized algorithm for Closest Pair
- Randomized primality test
- Cryptography
Classes of randomized algorithms

- **Las Vegas algorithms**
 - always correct; expected running time ("probably fast")
 - Examples:
 - randomized Quicksort,
 - randomized algorithm for closest pair

- **Monte Carlo algorithms (mostly correct):**
 - probably correct; guaranteed running time
 - Example: randomized primality test
Quicksort

Unsorted range $A[l, r]$ in array A

- $A[l \ldots r-1]$
- $A[l \ldots m-1]$ \rightarrow $A[m+1 \ldots r]$

Quicksort Quicksort
Quicksort

Algorithm: Quicksort

Input: unsorted range \([l, r]\) in array \(A\)

Output: sorted range \([l, r]\) in array \(A\)

1 if \(r > l\)
2 then choose pivot element \(p = A[r]\)
3 \(m = \text{divide}(A, l, r)\)
4 \(/\!*\text{Divide A according to } p:\!/\)
5 \(A[1], \ldots, A[m - 1] \leq p \leq A[m + 1], \ldots, A[r]\)
6 \(/\!*\!/\)
7 Quicksort\((A, l, m - 1)\)
8 Quicksort\((A, m + 1, r)\)
The *divide step*
The *divide* step

divide(A, l, r):

- returns the index of the pivot element in A
- can be done in time \(O(r – l) \)
Worst-case input

n elements:

Running time: \((n-1) + (n-2) + \ldots + 2 + 1 = n\cdot(n-1)/2\)
Randomized Quicksort

Algorithm: Quicksort

Input: unsorted range \([l, r]\) in array \(A\)

Output: sorted range \([l, r]\) in array \(A\)

1. if \(r > l\)
 2. then randomly choose a pivot element \(p = A[i]\) in range \([l, r]\)
 3. swap \(A[i]\) and \(A[r]\)
 4. \(m = \text{divide}(A, l, r)\)
 /* Divide \(A\) according to \(p\):
 \(A[l], \ldots, A[m - 1] \leq p \leq A[m + 1], \ldots, A[r]\)
 */
 5. \(\text{Quicksort}(A, l, m - 1)\)
 6. \(\text{Quicksort}(A, m + 1, r)\)
Analysis 1

n elements; let S_i be the i-th smallest element

S_1 is chosen as pivot with probability $1/n$:
Sub-problems of sizes 0 and $n-1$

S_k is chosen as pivot with probability $1/n$:
Sub-problems of sizes $k-1$ and $n-k$

S_n is chosen as pivot with probability $1/n$:
Sub-problems of sizes $n-1$ and 0
Analysis 1

Expected running time:

\[T(n) = \frac{1}{n} \sum_{k=1}^{n} (T(k - 1) + T(n - k)) + \Theta(n) \]

\[= \frac{2}{n} \sum_{k=1}^{n} T(k - 1) + \Theta(n) \]

\[= O(n \log n) \]
Analysis 2: Representation of Quicksort as a tree

\[\pi = S_6 S_2 S_8 S_1 S_4 S_7 S_9 S_3 S_5 \]
Analysis 2

Expected number of comparisons:

\[X_{ij} = \begin{cases}
1 & \text{if } S_i \text{ is compared with } S_j \\
0 & \text{otherwise}
\end{cases} \]

\[
E\left[\sum_{i=1}^{n} \sum_{j>i} X_{ij} \right] = \sum_{i=1}^{n} \sum_{j>i} E[X_{ij}]
\]

\[p_{ij} = \text{probability that } S_i \text{ is compared with } S_j \]

\[
E[X_{ij}] = 1 \times p_{ij} + 0 \times (1 - p_{ij}) = p_{ij}
\]
Calculation of p_{ij}

- S_i is compared with S_j iff S_i or S_j is chosen as pivot element in π before any other S_l, $i<l<j$.
 $$\{S_i \ldots S_l \ldots S_j\}$$

- Each of the elements S_i, \ldots, S_j is chosen first as the pivot with the same probability.

$$p_{ij} = \frac{2}{j-i+1}$$
Analysis 2

Expected number of comparisons:

\[
\sum_{i=1}^{n} \sum_{j>i} p_{ij} = \sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1}
\]

\[
= \sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k}
\]

\[
\leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k}
\]

\[
= 2n \sum_{k=1}^{n} \frac{1}{k}
\]

\[
H_n = \sum_{k=1}^{n} 1/k \approx \ln n
\]
Algorithm Theory
4 Randomized Algorithms: Quicksort

Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08