Algorithm Theory
4 Randomized Algorithms: Test of Primality

Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08
Randomized algorithms

- Classes of randomized algorithms
- Randomized Quicksort
- Randomized primality test
- Cryptography
Classes of randomized algorithms

- **Las Vegas algorithms**
 - *always correct*; expected running time (“probably fast”)
 - Examples:
 - randomized Quicksort,
 - randomized algorithm for closest pair

- **Monte Carlo algorithms** *(mostly correct)*:
 - *probably correct*; guaranteed running time
 - Example: randomized primality test
Primality test

Definition: An integer $p \geq 2$ is prime iff $(a | p \rightarrow a = 1$ or $a = p)$.

Algorithm: deterministic primality test (naive)

Input: integer $n \geq 2$

Output: answer to the question: Is n prime?

if $n = 2$ then return true
if n even then return false
for $i = 1$ to $\sqrt{n}/2$ do
 if $2i + 1$ divides n
 then return false
return true

Complexity: $\Theta(\sqrt{n})$
Primality test

Goal:
Randomized method

- Polynomial time complexity (in the length of the input)
- If answer is “not prime”, then \(n \) is not prime
- If answer is “prime”, then the probability that \(n \) is not prime is at most \(p > 0 \)

\(k \) iterations: probability that \(n \) is not prime is at most \(p^k \)
Primality test

Observation:
Each odd prime number p divides $2^{p-1} - 1$.

Examples: $p = 17$, $2^{16} - 1 = 65535 = 17 \times 3855$
$p = 23$, $2^{22} - 1 = 4194303 = 23 \times 182361$

Simple primality test:
1. Calculate $z = 2^{n-1} \mod n$
2. if $z = 1$
3. then n is possibly prime
4. else n is definitely not prime

Advantage: This only takes polynomial time
Simple primality test

Definition:

\(n \) is called pseudoprime to base 2, if \(n \) is not prime and

\[2^{n-1} \mod n = 1. \]

Example: \(n = 11 \times 31 = 341 \)

\[2^{340} \mod 341 = 1 \]
Randomized primality test

Theorem: (Fermat‘s little theorem)
If \(p \) prime and \(0 < a < p \), then
\[
a^{p-1} \mod p = 1.
\]

Definition:

\(n \) is **pseudoprime** to base \(a \), if \(n \) not prime and
\[
a^{n-1} \mod n = 1.
\]

Example: \(n = 341, \ a = 3 \)
\[
3^{340} \mod 341 = 56 \neq 1
\]
Randomized primality test

Algorithm: Randomized primality test 1

1 Randomly choose $a \in [2, n-1]$
2 Calculate $a^{n-1} \mod n$
3 if $a^{n-1} \mod n = 1$
4 then n is possibly prime
5 else n is definitely not prime

$\text{Prob}(n \text{ is not prim, but } a^{n-1} \mod n = 1)$?
Carmichael numbers

Problem: Carmichael numbers

Definition: An integer n is called **Carmichael number** if

$$a^{n-1} \mod n = 1$$

for all a with $\gcd(a, n) = 1$. (GCD = greatest common divisor)

Example:

Smallest Carmichael number: $561 = 3 \times 11 \times 17$
Randomized primality test 2

Theorem:
If p prime and $0 < a < p$, then the only solutions to the equation

$$a^2 \mod p = 1$$

are $a = 1$ and $a = p - 1$.

Definition:
a is called non-trivial square root of $1 \mod n$, if

$$a^2 \mod n = 1 \text{ and } a \neq 1, n - 1.$$

Example: $n = 35$

$$6^2 \mod 35 = 1$$
Fast exponentiation

Idea:
During the computation of a^{n-1} ($0 < a < n$ randomly chosen), test whether there is a non-trivial square root mod n.

Method for the computation of a^n:

Case 1: [n is even]
$$a^n = a^{n/2} \times a^{n/2}$$

Case 2: [n is odd]
$$a^n = a^{(n-1)/2} \times a^{(n-1)/2} \times a$$
Fast exponentiation

Example:

\[a^{62} = (a^{31})^2 \]
\[a^{31} = (a^{15})^2 \times a \]
\[a^{15} = (a^{7})^2 \times a \]
\[a^{7} = (a^{3})^2 \times a \]
\[a^{3} = (a)^2 \times a \]

Complexity: \(O(\log^2 n \log n) \)
Fast exponentiation

boolean isProbablyPrime;

power(int a, int p, int n) {
 /* computes \(a^p \mod n \) and checks during the computation whether there is an \(x \) with \(x^2 \mod n = 1 \) and \(x \neq 1, n-1 \) */
 if (p == 0) return 1;
 x = power(a, p/2, n)
 result = (x * x) \% n;
Fast exponentiation

/* check whether $x^2 \mod n = 1$ and $x \neq 1, n-1$ */
if (result == 1 && x != 1 && x != n -1)
 isProbablyPrime = false;

if (p % 2 == 1)
 result = (a * result) % n;

return result;
}

Complexity: $O(\log^2 n \log p)$
Randomized primality test 2

```c
primalityTest(int n) {
    /* carries out the randomized primality test for a randomly selected a */
    a = random(2, n-1);
    isProbablyPrime = true;
    result = power(a, n-1, n);
    if (result != 1 || !isProbablyPrime)
        return false;
    else
        return true;
}
```
Theorem:
If \(n \) is not prime, there are at most
\[
\frac{n - 9}{4}
\]
integers \(0 < a < n \), for which the algorithm primalityTest fails (for non Carmichael Numbers)
Algorithm Theory
4 Randomized Algorithms: Test of Primality

Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08