Algorithm Theory
5 Randomized Algorithms: Public Key Cryptosystems

Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08
Randomized algorithms

- Classes of randomized algorithms
- Randomized Quicksort
- Randomized primality test
- Cryptography
Classes of randomized algorithms

- **Las Vegas algorithms**
 - **always correct**; expected running time ("probably fast")
 - Examples:
 - randomized Quicksort,
 - randomized algorithm for closest pair

- **Monte Carlo algorithms (mostly correct):**
 - **probably correct**; guaranteed running time
 - Example: randomized primality test
Application: cryptosystems

Traditional encryption of messages with secret keys

Disadvantages:

1. The key k has to be exchanged between A and B before the transmission of the message.
2. For messages between n parties $n(n-1)/2$ keys are required.

Advantage:

Encryption and decryption can be computed very efficiently.
Duties of security providers

Guarantee…

• confidential transmission
• integrity of data
• authenticity of the sender
• reliable transmission
Public-key cryptosystems

Diffie and Hellman (1976)

Idea: Each participant A has two keys:

1. a **public** key P_A accessible to every other participant

2. a **private** (or: **secret**) key S_A only known to A.
Public-key cryptosystems

\[D = \text{set of all legal messages,} \]
\[\text{e.g. the set of all bit strings of finite length} \]

\[P_A(\), S_A(\): D \rightarrow D \]

Three conditions:

1. \(P_A \) and \(S_A \) can be computed efficiently

2. \(S_A(P_A(M)) = M \) and \(P_A(S_A(M)) = M \)
 \((P_A, S_A \text{ are inverse functions}) \)

3. \(S_A \text{ cannot be computed from } P_A \) (with reasonable effort)
Encryption in a public-key system

A sends a message M to B.

Dear Bob,
I just checked the new ...

$\#^k- + ;}{?, @-) #$<9 {o7::-&$3 (-##!]?8 ...

Dear Bob,
I just checked the new ...

Encryption in a public-key system

1. A accesses B’s public key P_B (from a public directory or directly from B).
2. A computes the encrypted message $C = P_B(M)$ and sends C to B.
3. After B has received message C, B decrypts the message with his own private key S_B: $M = S_B(C)$
Generating a digital signature

A sends a digitally signed message M' to B:

1. A computes the digital signature σ for M' with her own private key:
 \[\sigma = S_A(M') \]

2. A sends the pair (M', σ) to B.

3. After receiving (M', σ), B verifies the digital signature:
 \[P_A(\sigma) = M' \]

σ can be verified by anybody via the public P_A.
RSA cryptosystems

R. Rivest, A. Shamir, L. Adleman

Generating the public and private keys:

1. Randomly select two primes p and q of similar size, each with $l+1$ bits ($l \geq 500$).

2. Let $n = p \cdot q$

3. Let e be an integer that does not divide $(p - 1)(q - 1)$.

4. Calculate $d = e^{-1} \mod (p - 1)(q - 1)$

 i.e.: $d \cdot e \equiv 1 \mod (p - 1)(q - 1)$
RSA cryptosystems

5. Publish $P = (e, n)$ as public key

6. Keep $S = (d, n)$ as private key

Divide message (represented in binary) in blocks of size 2^{-l}.
Interpret each block M as a binary number: $0 \leq M < 2^{2^{-l}}$

$$P(M) = M^e \mod n \quad S(C) = C^d \mod n$$
Multiplicative Inverse

- **Theorem** (GCD recursion theorem)
 - For any numbers a and b with $b > 0$
 $\text{GCD}(a, b) = \text{GCD}(b, a \mod b)$

- **Algorithm Euclid**
 Input: Two integers a and b with $b \geq 0$
 Output: $\text{GCD}(a, b)$

  ```plaintext
  if $b = 0$
    then return $a$
  else return $\text{Euclid}(b, a \mod b)$
  ```
Multiplicative Inverse

- **Algorithm** Extended-Euclid
 - **Input:** Two integers a and b with $b \geq 0$
 - **Output:** $\text{GCD}(a,b)$ and two integers x and y with $xa+yb=\text{GCD}(a,b)$
 - if $b=0$ then return $(a,1,0)$
 - else $(d,x',y') := \text{Extended-Euclid}(b,a \mod b)$
 - $x := y'$; $y = x' - \lfloor a/b \rfloor y'$
 - return (d,x,y)

- **Application:** $a=(p-1)(q-1)$, $b = u$
 The algorithm returns numbers x and y with
 $$x(p-1)(q-1) + ye = \text{GCD}((p-1)(q-1),e) = 1$$
Algorithm Theory
5 Randomized Algorithms: Public Key Cryptosystems

Christian Schindelhauer
Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08