Overview

‣ Introduction
‣ Universal Hashing
‣ Perfect Hashing
The Dictionary Problem

Given: Universe $U = [0...N-1]$, where N is a natural number.

Goal: Maintain a set $S \subseteq U$ under the following operations

- **Search**(x,S): Is $x \in S$?
- **Insert**(x,S): Insert x into S if not already in S.
- **Delete**(x,S): Delete x from S
Naive Implementation

Array \(A[0\ldots N-1] \) where \(A[i] = 1 \iff i \in S \)

Each operation takes constant (\(O(1) \)) time but required memory space is \(\Theta(N) \).

\[
\begin{array}{cccccccccccc}
0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}
\]

\(N-1 \)

Goal: Space \(O(|S|) \) and *expected* time \(O(1) \).
Idea of Hashing

Use an **Array** of length $O(|S|)$.

Compute the **position**, where to store an element using a **function** defined on the **keys**

Universe $U = [0…N-1]$

Hash table Array $T[0…m-1]$

Hash function $h: U \rightarrow [0…m-1]$

Element $x \in S$ is stored in $T[h(x)]$
Example

\[
N = 100; \quad U = [0...99]; \quad m = 7; \quad h(x) = x \mod 7; \quad S = \{3, 19, 22\}
\]

If 17 is inserted next, a collision arises because \(h(17) = 3\).
Possible Collision Resolutions

- **Hashing with chaining:** $T[i]$ contains a list of elements

- **Hashing with open addressing:** Instead of one address for an element there are m many that are probed sequentially

- **Universal Hashing:** Choose a hash function such that only few collisions occur. Collisions are resolved by a chained lists.

- **Perfect hashing:** Choose a hash function such that no collisions occur.
Universal Hashing

Idea: Use a class H of hash functions. The hash function $h \in H$ actually used is chosen uniformly at random from H.

Goal: For each $S \subseteq U$, the expected time of each operation is $O(1 + \beta)$ where $\beta = |S|/m$ is the load factor of the table.

Property of H: For two arbitrary elements $x, y \in U$, only few $h \in H$ lead to a collision ($h(x) = h(y)$).
Universal Hashing

Definition: Let N and m natural numbers. A class $H \subseteq \{ h : [0...N-1] \rightarrow [0...m-1] \}$ is **universal** if for all $x, y \in U = [0...N-1], \; x \neq y$:

$$\frac{\left| \{ h \in H : h(x) = h(y) \} \right|}{|H|} \leq \frac{1}{m}$$

Intuition: An h chosen uniformly at random is as good as if the table position of the elements are chosen uniformly at random.
A Universal Class of Functions

Let N, m be natural numbers, N is prime.

For numbers $a \in \{1, \ldots, N-1\}$ and $b \in \{0, \ldots, N-1\}$, let $h_{a,b} : U = [0\ldots N-1] \rightarrow \{0, \ldots, m-1\}$ be defined as:

$$h_{a,b} (x) = ((ax + b) \mod N) \mod m$$

Theorem: $H = \{h_{a,b} (x) \mid 1 \leq a < N \text{ und } 0 \leq b < N\}$ is a universal class of hash functions
Proof

Consider a fixed pair x, y with $x \neq y$.

$$h_{a,b}(x) = ((ax+b) \mod N) \mod m \quad h_{a,b}(y) = ((ay+b) \mod N) \mod m$$

1. Pairs (q,r) with $q = (ax+b) \mod N$ and $r = (ay+b) \mod N$
 for variable a, b take the whole range $0 \leq q, r < N$ with $q \neq r$
 - $x \neq y$ implies $q \neq r$, because $q = r$ implies $a(x-y) = 0 \mod N$
 - different a, b yield different pairs (q,r).

 $$(ax+b) \mod N = q \quad (ay+b) \mod N = r$$
 $$(a'x+b') \mod N = q \quad (a'y+b') \mod N = r$$

 imply $(a-a')(x-y) = 0 \mod N$
Proof

Consider a fixed pair \(x, y\) with \(x \neq y\).

\[
h_{a,b}(x) = ((ax+b) \mod N) \mod m \quad h_{a,b}(y) = ((ay+b) \mod N) \mod m
\]

2. How many pairs \((q, r)\) with \(q = (ax+b) \mod N\) and \(r = (ay+b) \mod N\) are mapped into the same residue class \(\mod m\)?

For a fixed \(q\), there are only \((N-1)/m\) numbers \(r\) with \(q \mod m = r \mod m\) and \(q \neq r\).

\[
|\{h \in H : h(x) = h(y)\}| \leq N(N-1)/m = |H|/m
\]
Analysis of the Operations

Assumptions:

1. \(h \) is chosen uniformly at random from a universal class \(H \)
2. Collisions are resolved by chained lists

For \(h \in H \) and \(x, y \in U \) let

\[
\delta_h(x, y) = \begin{cases}
1 & h(x) = h(y) \text{ and } x \neq y \\
0 & \text{otherwise}
\end{cases}
\]

\[
\delta_h(x, S) = \sum_{y \in S} \delta_h(x, y) \text{ is the number of elements in } T[h(x)] \text{ different from } x \text{ when } S \text{ is stored.}
\]
Analysis of the Operations

Theorem: Let H be a universal class and $S \subseteq U = [0…N-1]$ with $|S| = n$.

1. For any $x \in U$:

$$\frac{1}{|H|} \sum_{h \in H} (1 + \delta_h(x, S)) \leq \begin{cases} 1 + n/m & x \not\in S \\ 1 + (n - 1)/m & x \in S \end{cases}$$

2. The expected time of the operations Search, Insert, and Delete is $O(1 + \beta)$, where $\beta = n/m$ is the load factor.
Proof

1. \[\sum_{x \in H} (1 + \delta_h(x, S)) = |H| + \sum_{h \in H} \sum_{y \in S} \delta_h(x, y) \]

 \[= |H| + \sum_{y \in S} \sum_{h \in H} \delta_h(x, y) \]

 \[= |H| + \sum_{y \in S \setminus \{x\}} \sum_{h \in H} \delta_h(x, y) \]

 \[\leq |H| + \sum_{y \in S \setminus \{x\}} \frac{|H|}{m} \]

 \[\leq \begin{cases} |H| (1 + \frac{n}{m}) & x \notin S \\ |H| (1 + \frac{n-1}{m}) & x \in S \end{cases} \]

2. follows from 1.
Perfect Hashing

Choose a hash function that is injective (i.e. one-to-one) on the set S to be stored. (Assumption: S is known in advance.)

Two-level hashing scheme

1. In the first level, S is partitioned into “short lists”. (hashing with chaining)

2. In the second level for each list, a separate injective hash function used.
Constructions of Injective Hash Functions

Let $U = [0 \ldots N-1]$.

For $k \in \{1, \ldots, N-1\}$, let

$$h_k : U \rightarrow \{0, \ldots, m-1\}$$

$$x \rightarrow ((kx) \mod N) \mod m$$

Let $S \subseteq U$. Is it possible to choose k such that h_k restricted to S is injective?

h_k restricted to S is injective if for all $x, y \in S, x \neq y$,

$$h_k(x) \neq h_k(y)$$
A Measure for the Violation of Injectivity

For $0 \leq i \leq m-1$ and $1 \leq k \leq N-1$

$$b_{ik} = \lvert\{x \in S : h_k(x) = i\}\rvert$$

Then:

$$\lvert\{(x,y) \in S^2 : x \neq y \text{ and } h_k(x) = h_k(y) = i\}\rvert = b_{ik} (b_{ik} - 1)$$

Define

$$B_k = \sum_{i=0}^{m-1} b_{ik} (b_{ik} - 1)$$

B_k measure to which extent h_k restricted to S is not injective.
Injectivity

Lemma 1: h_k restricted to S is injective $\iff B_k < 2$

Proof:

$B_k < 2 \quad \Rightarrow \quad B_k \leq 1 \quad \Rightarrow \quad b_{ik} (b_{ik} - 1) \in \{0,1\} \quad \text{for all } i$

$\Rightarrow \quad b_{ik} \in \{0,1\} \quad \Rightarrow \quad h_k$ restricted to S is injective

h_k restricted to S is injective $\quad \Rightarrow \quad b_{ik} \in \{0,1\} \quad \text{for all } i$

$\Rightarrow \quad B_k = 0$
Injectivity

Lemma 2: Let N be a prime number, $S \subseteq U = [0…N-1]$ with $|S| = n$. Then

$$\sum_{k=1}^{N-1} B_k \leq 2 \frac{n(n-1)}{m} (N - 1)$$

If $m > n(n-1)$, then there exists B_k with $B_k < 2$, i.e. there is an h_k, that is injective on S.
Proof of Lemma 2

\[
\begin{align*}
N - 1
\sum_{k=1}^{N-1} B_k &= \sum_{k=1}^{N-1} \sum_{i=0}^{m-1} b_{ik} (b_{ik} - 1) \\
&= \sum_{k=1}^{N-1} \sum_{i=0}^{m-1} \left| \{(x, y) \in S^2 : x \neq y, h_k(x) = h_k(y) = i\} \right| \\
&= \sum_{(x, y) \in S^2 \atop x \neq y} \left| \{k : h_k(x) = h_k(y)\} \right|
\end{align*}
\]

Let \((x, y) \in S^2, x \neq y,\) be fixed. How many \(k\) exist with \(h_k(x) = h_k(y)?\)
Proof of Lemma 2

\[h_k(x) = h_k(y) \]
\[\iff ((kx) \mod N) \mod m = ((ky) \mod N) \mod m \]
\[\iff (kx \mod N - ky \mod N) \mod m = 0 \]
\[\iff k(x - y) \mod N = cm \]

\[q = k(x-y) \mod N \]

--- different \(k, k' \) result in different \(q, q' \).
\[k(x-y) \mod N = q \quad k'(x-y) \mod N = q \]

\[(k-k')(x-y) = c'N \]

--- only \(\lceil (N-1)/m \rceil \) many \(q \) are mapped into the same residue class \(\mod m \)
Implications

Corollary 1: There are at least $(N-1)/2$ many k with $B_k \leq 4n(n-1)/m$.

Such a k can be found in expected time $O(m+n)$.

Proof: Suppose that there are less than $(N-1)/2$ many k with $B_k \leq 4n(n-1)/m$.

Then there at least $(N-1)/2$ many k with $B_k > 4n(n-1)/m$.

$$\Rightarrow \sum_{k=1}^{N-1} B_k > \frac{N-1}{2} \frac{4n(n-1)}{m} = \frac{N-1}{m} 2n(n-1)$$

With probability at least $1/2$, a k chosen at random fulfills the condition. The expected number of trials is at most 2.
Implications

Corollary 2:

a) Let $m = 2n(n-1)+1$. Then at least $(N-1)/2$ of the h_k are injective on S. Such an h_k can be found in expected time $O(m+n) = O(n^2)$.

b) Let $m = n$. Then for at least $(N-1)/2$ of the h_k it holds that $B_k \leq 4(n-1)$. Such an h_k can be found in expected time $O(n)$.
Two-Level Scheme

\[S \subseteq U = [0\ldots N-1] \quad |S| = n = m \]

Idea: Use Corollary 2b and divide \(S \) into subsets of size at most \(O(\sqrt{n}) \).

Use Corollary 2a for each subset.

1. Choose \(k \) with \(B_k \leq 4(n-1) \leq 4n \).

\[h_k : x \rightarrow ((kx) \mod N) \mod n \]

2. \(W_i = \{ x \in S : h_k(x) = i \}, \quad b_i = |W_i|, \quad m_i = 2b_i (b_i-1)+1 \)

for \(0 \leq i \leq n-1 \)

Choose \(k_i \) such that

\[h_{k_i} : x \rightarrow (k_i x \mod N) \mod m_i \]

restricted to \(W_i \) is injective.
Two-Level Scheme

3. $S_i = \sum_{j<i} m_j$

Store $x \in S$ in table positions $T[s_i + j]$ where

$i = (k \times \text{mod } N) \mod n$ \hspace{1cm} $j = (k_i \times \text{mod } N) \mod m_i$
Space Required for Hash Table and Functions

\[m = \sum_{i=0}^{n-1} m_i = \sum_{i=0}^{n-1} \left(2b_i(b_i - 1) + 1\right) = n + 2B_k \leq n + 8(n - 1) \leq 9n \]

Additional space is required for storing \(k_i, m_i \) and \(s_i \).

The total space requirement is \(O(n) \).
Construction Time

- According to Corollary 2b, k can be found in expected time $O(n)$.
- W_i, b_i, m_i, s_i can be computed in time $O(n)$.
- According to Corollary 2a each k_i can be computed in expected time $O(b_i^2)$.

Total expected time:

$$O \left(n + \sum_{i=0}^{n} b_i^2 \right) = O(n + B_k) = O(n)$$
Main Result

Theorem: Let N be a prime number and $S \subseteq U = [0...N-1]$ with $|S| = n$.
A perfect hash table of size $O(n)$ and a hash function with access time $O(1)$ can be constructed in expected time $O(n)$.
Algorithm Theory
7 Hashing

Christian Schindelhauer
Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08