Algorithm Theory
14 Shortest Paths

Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08
Shortest Path Problem

Directed graph: $G = (V, E)$

Cost function: $c : E \rightarrow R$
Distance between two vertices

Cost of a path $P = v_0, v_1, \ldots, v_l$ from v to w

$$c(P) = \sum_{i=0}^{l-1} c(v_i, v_{i+1})$$

Distance from v to w (not always defined)

$$dist(v, w) = \inf \{ c(P) \mid P \text{ is a path from } v \text{ to } w \}$$
Example

\begin{align*}
\text{dist}(1,2) &= \\
\text{dist}(1,3) &= \\
\text{dist}(3,1) &= \\
\text{dist}(3,4) &=
\end{align*}
Single Source Shortest Paths

Problems

Input: network $G = (V, E, c)$ \(c : E \rightarrow R \) \hspace{1cm} \text{Node } s

Output: \(\text{dist}(s, v) \) for all \(v \in V \)

Observation: \(\text{dist} \) fulfills the triangle inequality

For all edges \((u,v) \in E\) and for all \(s \in V \):

\[
\text{dist}(s,v) \leq \text{dist}(s,u) + c(u,v)
\]
Greedy Algorithm

1. Overestimate \(dist \)-function

\[
dist(s, v) = \begin{cases}
0 & \text{if } v = s \\
\infty & \text{if } v \neq s
\end{cases}
\]

2. While there exists an edge \(e = (u, v) \) with

\[
dist(s, v) > dist(s, u) + c(u, v)
\]

set \(dist(s, v) \leftarrow dist(s, u) + c(u, v) \)
Generic Algorithm

1. \(\text{DIST}[s] \leftarrow 0; \)
2. \(\text{for all } v \in V \setminus \{s\} \text{ do } \text{DIST}[v] \leftarrow \infty \text{ endfor}; \)
3. \(\text{while } \exists e = (u,v) \in E \text{ with } \text{DIST}[v] > \text{DIST}[u] + c(u,v) \text{ do } \)
4. \(\text{Choose an edge } e = (u,v); \)
5. \(\text{DIST}[v] \leftarrow \text{DIST}[u] + c(u,v); \)
6. \(\text{endwhile; } \)

Questions:
1. How to check in line 3 whether the triangle inequality holds.
2. Which edge needs to be chosen in line 4?
Solution

Maintain a set U of all vertices that might have an outgoing edge violating the triangle inequality.
- Initialize $U = \{s\}$
- Add vertex v to U whenever $\text{DIST}[v]$ decreases.

1. Check if the triangle inequality is violated: $U \neq \emptyset$?
2. Choose a vertex from U and restore the triangle inequality for all outgoing edges (relaxation).
Refined Algorithm

1. DIST[s] ← 0;
2. for all \(v \in V \setminus \{s\} \) do DIST[v] ← \(\infty \) endfor;
3. \(U \leftarrow \{s\} \);
4. while \(U \neq \emptyset \) do
5. Choose a vertex \(u \in U \) and delete it from \(U \)
6. for all \(e = (u,v) \in E \) do
7. \(\text{if } \text{DIST}[v] > \text{DIST}[u] + c(u,v) \text{ then} \)
8. \(\text{DIST}[v] \leftarrow \text{DIST}[u] + c(u,v); \)
9. \(U \leftarrow U \cup \{v\}; \)
10. endif;
11. endfor;
12. endwhile;
Invariant for the DIST Values

Lemma 1: For each vertex $v \in V$ we have $\text{DIST}[v] \geq \text{dist}(s,v)$.

Proof: (by contradiction)
Let v be the first vertex for which the relaxation of an edge (u,v) yields $\text{DIST}[v] < \text{dist}(s,v)$.

Then:
\[\text{DIST}[u] + c(u,v) = \text{DIST}[v] < \text{dist}(s,v) \leq \text{dist}(s,u) + c(u,v) \]
which implies
\[\text{DIST}[u] < \text{dist}(s,u) \]
contradicts the assumption that at v the first violation occurred.
Important Properties

Lemma 2:

a) If $v \not\in U$, then for all $(v,w) \in E$: $\text{DIST}[w] \leq \text{DIST}[v] + c(v,w)$

b) Let $s=v_0, v_1, ..., v_l=v$ be the shortest path s to v. If $\text{DIST}[v] > \text{dist}(s,v)$, then there exists v_i, $0 \leq i \leq l-1$, with $v_i \in U$ and $\text{DIST}[v_i] = \text{dist}(s,v_i)$.

c) If G has no negative cost cycles and $\text{DIST}[v] > \text{dist}(s,v)$ for any $v \in V$, then there exists a $u \in U$ and $\text{DIST}[u] = \text{dist}(s,u)$.

d) If in line 5 we always choose $u \in U$ with $\text{DIST}[u] = \text{dist}(s,u)$, then the while-loop is executed only once per vertex.
Important Properties

- Proof of 2a:
 - If \(v \notin U \), then for all \((v,w) \in E:\) \(\text{DIST}[w] \leq \text{DIST}[v] + c(v,w) \)
- Induction on the number \(i \) of executions of while-loops
 - \(i = 0 \): nodes \(v \neq s \) are not in \(U \)
 - \(\text{DIST}[w] \leq \text{DIST}[v] + c(v,w) \) is true since \(\text{DIST}[v] = \infty \)
 - \(i > 0 \): Assume 2a is true before \(i \)-th execution of the while loop
 - To show: it is true after the \(i \)-th execution of the while loop
 - Let \(v \notin U \) after the execution \(i \)-th execution of the while loop
 - 1. case \(v \notin U \) before the \(i \)-th execution of the while loop
 - \(\text{Dist}[v] \) does not change.
 - \(\text{Dist}[w] \) may be decreased.
 - 2. case \(v \in U \) before the \(i \)-th execution of the while loop
 - follows by algorithm since \(v \) was chosen and hence \(\text{DIST}[w] = \text{DIST}[v] + c(v,w) \)
Important Properties

- **Proof of Lemma 2b:**
 - Let $s = v_0, v_1, ..., v_l = v$ be the shortest path s to v.
 - If $\text{DIST}[v] > \text{dist}(s,v)$, then there exists v_i, $0 \leq i \leq l-1$, with $v_i \in U$ and $\text{DIST}[v_i] = \text{dist}(s,v_i)$.

- **Let i be the maximum index with**
 - $\text{DIST}[v_i] = \text{dist}(s,v_i)$
 - i exists because $\text{DIST}[s] = \text{dist}(s,s) = 0$

- **Assume** $v_i \notin U$
 - By Lemma 2a):
 $\text{DIST}[v_{i+1}] \leq \text{DIST}[v_i] + c(v_i,v_{i+1})$
 $\quad \quad \quad \quad \quad = \text{dist}(s,v_i) + c(v_i,v_{i+1})$
 $\quad \quad \quad \quad \quad = \text{dist}(s,v_{i+1})$
 - This implies $\text{DIST}[v_{i+1}] = \text{dist}(s,v_{i+1})$
 - which contradicts that i is maximal.
Important Properties

- Proof of Lemma 2c:
 - If G has no negative cost cycle and $DIST[v] > \text{dist}(s,v)$ for any $v \in V$, then there exists a $u \in U$ and $DIST[u] = \text{dist}(s,u)$.

- There is a finite shortest path
 - if there is no negative cost cycle

- From 2b it follows that U is non-empty
 - Then there is $v_i \in U \Rightarrow DIST(v_i) = \text{dist}(s,v_i)$

- Set $v_i = u$ then 2c follows
Important Properties

- **Proof of Lemma 2d:**
 - If in line 5 we always choose \(u \in U \) with \(\text{DIST}[u] = \text{dist}(s,u) \), then the while-loop is executed only once per vertex.

- **A node u can only be added again to U**
 - if \(\text{DIST}[u] \) decreases again
 - But then \(\text{DIST}[u] < \text{dist}(s,v) \)
 - this contradicts Lemma 1
Efficient Implementations

Line 5: How can we find a vertex \(u \in U \) with \(\text{DIST}[u] = \text{dist}(s,u) \)?

Important special cases.

- Non negative networks (only non-negative edge costs)
 - Dijkstra’s algorithm
- Networks without negative cost cycles
 - Bellman-Ford algorithm
- Acyclic networks
Non Negative Networks

5’. Choose a vertex $u \in U$ with minimum distance $\text{DIST}[u]$ and delete it from U.

Lemma 3: Using 5’ we have $\text{DIST}[u] = \text{dist}(s,u)$.

Proof: Assume $\text{DIST}[u] > \text{dist}(s,u)$

By Lemma 2b) there is a vertex $v \in U$ on the shortest path from s to u with $\text{DIST}[v] = \text{dist}(s,v)$.

$\text{DIST}[u] \leq \text{DIST}[v] = \text{dist}(s,v) \leq \text{dist}(s,u)$

Then, $\text{DIST}[u] = \text{dist}(s,u)$
Implementing U as Priority Queue

The elements of the form $(key, \, \text{inf})$ are the pairs $(\text{DIST}[v], \, v)$.

Empty(Q): Is Q empty?

Insert(Q, key, inf): Inserts (key,inf) into Q.

DeleteMin(Q): Returns the element with minimum key and deletes it from Q.

DecreaseKey(Q, $element$, j): Decreases the value of $element$´s key to the new value j, provided that j is less than the former key.
Dijkstra’s Algorithm

1. \(\text{DIST}[s] \leftarrow 0; \quad \text{Insert}(U, 0, s); \)

2. \(\text{for all } v \in V \setminus \{s\} \text{ do } \text{DIST}[v] \leftarrow \infty; \quad \text{Insert}(U, \infty, v); \quad \text{endfor}; \)

3. \(\text{while } \neg \text{Empty}(U) \text{ do} \)

4. \((d,u) \leftarrow \text{DeleteMin}(U); \)

5. \(\text{for all } e = (u,v) \in E \text{ do} \)

6. \(\text{if } \text{DIST}[v] > \text{DIST}[u] + c(u,v) \text{ then} \)

7. \(\text{DIST}[v] \leftarrow \text{DIST}[u] + c(u,v); \)

8. \(\text{DecreaseKey}(U, v, \text{DIST}[v]); \)

9. \(\text{endif}; \)

10. \(\text{endfor}; \)

11. \(\text{endwhile}; \)
Example
Example

Graph with labeled edges:
- **s** → **u** (10)
- **s** → **x** (5)
- **u** → **v** (9)
- **u** → **y** (4)
- **x** → **v** (9)
- **x** → **y** (7)
- **y** → **v** (6)

Edge weights:
- **s**-**u**: 2
- **u**-**v**: 1
- **u**-**y**: 3
- **x**-**v**: 9
- **x**-**y**: 2
- **y**-**v**: 9
- **y**-**s**: 5

Nodes:
- s
- u
- v
- x
- y
Running Time

\[O(n (T_{\text{Insert}} + T_{\text{Empty}} + T_{\text{DeleteMin}}) + m T_{\text{DecreaseKey}} + m + n) \]

Fibonacci heaps:

- \(T_{\text{Insert}} : O(1) \)
- \(T_{\text{DeleteMin}} : O(\log n) \) amortized
- \(T_{\text{DecreaseKey}} : O(1) \) amortized

\[O(n \log n + m) \]
Organize U as a queue.

Lemma 4: Each vertex v is inserted into U at most n times

Proof: Suppose that $\text{DIST}[v] > \text{dist}(s,v)$ and v is appended at U for the i-th time. Then, by Lemma 2c) there exists $u_i \in U$ with $\text{DIST}[u_i] = \text{dist}(s,u_i)$

Vertex u_i is deleted from U before v and will never be appended at U again.

Vertices u_1, u_2, u_3, ... are pairwise distinct.
Bellman-Ford-Algorithmus

1. DIST[s] ← 0; A[s] ← 0;
2. for all \(v \in V \setminus \{s\} \) do DIST[v] ← \(\infty \); A[v] ← 0; endfor;
3. U ← \{s\};
4. while U ≠ \(\emptyset \) do
5. Choose the first vertex u in U and delete it from U; A[u] ← A[u]+1;
6. if A[u] > n then return „negative cost cycle“;
7. for all \(e = (u,v) \in E \) do
8. if DIST[v] > DIST[u] + c(u,v) then
9. DIST[v] ← DIST[u] + c(u,v);
10. U ← U ∪ \{v\};
11. endif;
12. endfor;
13. endwhile;
Acyclic Networks

Topologic sorting: \(\text{num}: V \rightarrow \{1, \ldots, n\} \)

such that for all \((u, v) \in E:\) \(\text{num}(u) < \text{num}(v)\)
Algorithm for Acyclic Graphs

1. Sort $G = (V, E, c)$ topologically;
2. $\text{DIST}[s] \leftarrow 0$;
3. for all $v \in V \setminus \{s\}$ do $\text{DIST}[v] \leftarrow \infty$; endfor;
4. $U \leftarrow \{v \mid v \in V \text{ with } \text{num}(v) < n\}$;
5. while $U \neq \emptyset$ do
6. Choose vertex $u \in U$ with minimum num;
7. for all $e = (u, v) \in E$ do
8. if $\text{DIST}[v] > \text{DIST}[u] + c(u, v)$ then
9. $\text{DIST}[v] \leftarrow \text{DIST}[u] + c(u, v)$;
10. endif;
11. endfor;
12. endwhile;
Example

\begin{itemize}
\item Example: \textit{Stuvw} 2 7 −1 2 6 1 −2 4 2 4
\end{itemize}
Correctness

Lemma 5: When the i-th vertex u_i is deleted from U, then

$$\text{DIST}[u_i] = \text{dist}(s, u_i).$$

Proof: Induction over i.

$i = 1$: ok

$i > 1$: Let $s = v_1, v_2, \ldots, v_l, v_{l+1} = u_i$ be a shortest path from s to u_i.

v_i is deleted from U before u_i

Then, by induction hypothesis: $\text{DIST}[v_i] = \text{dist}(s, v_i)$.

After (v_i, u_i) has been relaxed:

$$\text{DIST}[u_i] \leq \text{DIST}[v_i] + c(v_i, u_i) = \text{dist}(s, v_i) + c(v_i, u_i) = \text{dist}(s, u_i)$$
Algorithm Theory
14 Shortest Paths

Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08