Algorithm Theory
15 Binomial Queues

Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08
Priority Queues: Operations

- **Priority queue Q**
 - Data structure for maintaining a set of **elements**, each having an associated **priority**

- **Operations:**
 - **Q.initialize()**: creates empty queue Q
 - **Q.isEmpty()**: returns true iff Q is empty
 - **Q.insert(e)**: inserts element e into Q and returns a pointer to the node containing e
 - **Q.deletemin()**: returns the element of Q with minimum key and deletes it
 - **Q.min()**: returns the element of Q with minimum key
 - **Q.decreasekey(v,k)**: decreases the value of v’s key to the new value
Priority Queues: Operations

- Additional Operations:
 - \(Q.\text{delete}(v) \):
 - deletes node \(v \) and its elements from \(Q \)
 - \(v \) is a pointer to the element (no search)
 - \(Q.\text{meld}(Q') \):
 - unites \(Q \) and \(Q' \) (concatenable queue)
 - \(Q.\text{search}(k) \):
 - searches for the element with key \(k \) in \(Q \)
 (searchable queue)

- possibly many more,
 - e.g. \text{predecessor}, \text{successor}, \text{max}, \text{deletemax}
Priority Queues: Implementations

<table>
<thead>
<tr>
<th></th>
<th>List</th>
<th>Heap</th>
<th>Binomial Queue</th>
<th>Fibonacci Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>O(1)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>min</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(log n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>delete-min</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)*</td>
</tr>
<tr>
<td>meld (m≤n)</td>
<td>O(1)</td>
<td>O(n) or O(m log n)</td>
<td>O(log n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>decrease-key</td>
<td>O(1)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(1)*</td>
</tr>
</tbody>
</table>

* = amortized cost

\[Q.delete(e) = Q.decreasekey(e, \infty) + Q.deletemin() \]
Definition

Binomial tree B_n of order n, $n \geq 0$
Binomial Trees

B₀

B₁

B₂

B₃
Binomial Trees

B_4
Properties

1. B_n contains 2^n nodes
2. The height B_n is n
3. The root of B_n has degree n
4. $B_n = \ldots$
5. There are $\binom{n}{i}$ nodes in depth i in B_n
Binomial Coefficients

\[\binom{n}{i} = \# \text{i-element subsets that can be chosen from an n-element set} \]

Pascal's Triangle:

\[
\begin{array}{cccccc}
& & & 1 & & \\
& & 1 & 1 & & \\
& 1 & 2 & 1 & & \\
1 & 3 & 3 & 1 & & \\
1 & 4 & 6 & 4 & 1 & \\
\end{array}
\]
Number of Nodes at Depth i in B_n

- There are exactly $\binom{n}{i}$ nodes at depth i in B_n
- Proof by induction:
 - $n=0$
 $$\binom{0}{0} = 1$$
 - $n>0$
 $$\binom{n-1}{i} + \binom{n-1}{i-1} = \binom{n}{i}$$
Binomial Queues

- **Binomial queue Q:**
 - Set of **heap ordered** binomial trees of different order to store keys.

- **n keys**
 - $B_i \in Q \iff \text{i-th Bit in } n_2 = 1$

- **9 keys:**
 - $\{2, 4, 7, 9, 12, 23, 58, 65, 85\}$
 - $9 = (1001)_2$
Binomial Queues: 1st Example

9 keys:
{2, 4, 7, 9, 12, 23, 58, 65, 85}
9 = (1001)₂

Min can be computed in time O(log n)
Binomial Queues: 2nd Example

11 keys:
{2, 4, 6, 8, 14, 15, 17, 19, 23, 43, 47}
11 = (1011)₂ → 3 binomial trees

B_3, B_1, and B_0

Q_{11}:
Child - Sibling Representation

Structure of a node:

<table>
<thead>
<tr>
<th>parent</th>
<th>entry</th>
<th>degree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>child</td>
<td>sibling</td>
</tr>
</tbody>
</table>

B₀ B₂ B₃
Binomial Trees: Operation Meld (Link)

- Unite two binomial trees B, B' of same order
 - $B_n + B_n \rightarrow B_{n+1}$
- Procedure Link:
- B.Link(B')
 /*Make the root with the larger key a child of the root with the smaller key. */
 1. if B.key > B'.key
 2. then B'.Link(B)
 3. return
 /* B.key $\leq B'$.key*/
 4. B'.parent = B
 5. B'.sibling = B.child
 6. B.child = B
 7. B.degree = B.degree +1
- Running Time: $O(1)$
Example of the Link-Operation

\[B_2 + B_2 \]

\[B' \rightarrow B \]

\[B \]

\[\begin{array}{c}
12 \\
18 \\
20 \\
18 \\
\end{array} \]

\[\begin{array}{c}
15 \\
20 \\
22 \\
\end{array} \]

\[\begin{array}{c}
25 \\
30 \\
\end{array} \]
Binomial Queues: Meld-Operation

If the operation yields a B_i and the initial lists both contain a B_i, then unite the initial B's.

Time: $O(\log n)$
Binomial Queues: Operations

\(Q\.initialize:\)

\[Q\.root = null\]

\(Q\.insert(e):\)

new \(B_0\)

\(B_0\.entry = e\)

\(Q\.meld(B_0)\)

Time = \(O(\log n)\)
Binomial Queues: Deletemin

- **Q.deletemin():**
 1. Determine B_i whose root has the minimum key in the root list and delete B_i from Q (returns Q')
 2. Insert the children of B_i in reverse order into a new queue: $B_0, B_1, \ldots, B_{i-1} \rightarrow Q''$
 3. $Q'.meld(Q'')$

- **Running Time: $O(\log n)$**
Binomial Queues: Deletemin
1st Example

Q_{11}:
Binomial Queues: Deletemin
1st Example

$Q_{11}:$
Binomial Queues: Deletemin
2nd Example

Q → B_0 → B_2 → B_3 → B_4 → B_5

Q' → B_0 → B_2 → B_3 → B_5

Q'' → B_0 → B_1 → B_2 → B_3
Binomial Queues: Decreasekey

- **Q.decreasekey(v, k):**
 1. v.element.key := k
 2. Repeatedly exchange v.element with the element of v’s parent, until the heap property is restored.

- **Running Time:** $O(\log n)$
Binomial Queues: Worst Case Sequence of Operations

Q.deletemin():

Running Time: $O(\log n)$

insert(e, Q):
Algorithm Theory
15 Binomial Queues

Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08