Algorithm Theory
17 Union Find

Christian Schindelhauer
Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08
Union-Find Structures

- **Problem:**
 - Maintain a collection of disjoint sets while supporting the following operations:
 - `e.make-set()`:
 - Creates a new set whose only member is e
 - `e.find-set()`:
 - Return the set M_i containing e
 - `union(M_i, M_j)`:
 - Unite the sets M_i and M_j into a new set
Union-Find Structures

- **Representation** of set M_i:
 - M_i is identified by a representative, which is some member of M_i.
Union-Find Structures

- **Operation using representative elements:**
 - **e.make-set():**
 - Creates a new set whose only member is e. The representative is e.
 - **e.find-set():**
 - Returns the name of representative of the set containing e.
 - **e.union(f):**
 - Unites the sets M_e and M_f that e and f into a new set M and returns a member $M_e \cup M_f$ as the new representative of M. The sets M_e and M_f are erased.
Observations

- If \(n \) is the number of the make-set operations and \(m \) the total number of makes-set, find-set and union operations, then
 - \(m \geq n \)
 - after at most \((n – 1) \) union operations, only one set remains in the collection
Application: Connected Components

Input: Graph \(G = (V, E) \)

Output: collection of the connected components of \(G \)

Algorithm: Connected-Components

for all \(v \) in \(V \) do \(v.makeset() \)

for all \((u,v) \) in \(E \) do
 if \(u.findset() \neq v.findset() \) then \(u.union(v) \)

Same-Component \((u,v) \):
 if \(u.findset() = v.findset() \) then return \(true \)

\[\begin{array}{c}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\end{array} \]
Linked-List Representation

- `x.make-set()`
- `x.find-set()`
- `x.union(y)`
x.makeset()
f.find-set()
b.union(d)
Expensive Sequence of Operations

\[e_1.\text{make-set()} \]
\[e_2.\text{make-set()} \]
\[\vdots \]
\[e_n.\text{make-set()} \]
\[e_2.\text{union}(e_1) \]
\[e_3.\text{union}(e_1) \]
\[\vdots \]
\[e_n.\text{union}(e_{n-1}) \]

The longer list is always appended to the shorter list!

Pointer updates for the i-th operation \(e_i.\text{union}(e_{i-1}) \):

Running time of 2n -1 operations:
Improvement

- **Union by Size**
 - Always append the smaller list to the longer list. (Maintain the length of a list as a parameter)

- **Theorem**
 - Using the weighted union heuristic, the running time of a sequence of \(m \) make-set, find-set, and union operations, where \(n \) are make-set() operations, is \(O(m+n \log n) \)

- **Proof**
 - Consider element \(e \).
 - Number of times \(e \)'s pointer to the represented is updated: \(\log n \)

- Whenever an element has to update its pointer it becomes the element of a set with a size which as at least doubled
- because of the weighted union heuristic
- Every element experiences at most \(\log n \) union pointer changes
Disjoint Set Forests

- \texttt{a.make-set():} as before
- \texttt{y.find-set():} Follow path upwards
- \texttt{d.union(e):} Make the representative of one set (e.g. \(f \)) the parent of the representative of the other set
Example

$m = \text{total number of operations} \geq 2n$

- \text{for } i = 1 \text{ to } n \text{ do } e_i.\text{make-set}()$
- \text{for } i = n \text{ to } 2 \text{ do } e_{i-1}.\text{union}(e_i)$
- \text{for } i = 1 \text{ to } f \text{ do } e_n.\text{find-set}()$

i-th step

\text{running time of } f \text{ find-set operations: } O(f \cdot n)$
Union by Size

Additional variable:
\(e.\text{size} = (\# \text{nodes in the subtree rooted } e) \)

\(e.\text{make-set}() \)
1 \(e.\text{parent} = e \)
2 \(e.\text{size} = 1 \)

\(e.\text{union}(f) \)
1 \(\text{Link}(e.\text{find-set}(), f.\text{find-set}()) \)
Union by Size

\[\text{Link}(e,f) \]

1. \textbf{if} \ e.\text{size} \geq f.\text{size} \\
2. \textbf{then} \ f.\text{parent} = e \\
3. \ e.\text{size} = e.\text{size} + f.\text{size} \\
4. \textbf{else} /* e.\text{size} < f.\text{size */} \\
5. \ e.\text{parent} = f \\
6. \ f.\text{size} = e.\text{size} + f.\text{size}
Union by Size

- **Theorem**
 - The method union-by-size maintains the following invariant: A tree of height h contains at least 2^h

- **Proof**

\[
g_1 = |T_1| \geq 2^h \quad \text{and} \quad g_2 = |T_2| \geq 2^h
\]
Union by Size

Case 1: The height of the new tree is equal to the height of T_1

$$g_1 + g_2 \geq g_1 \geq 2^h$$

Case 2: The new tree T has a greater height

Height of T: $h_2 + 1$

$$g = g_1 + g_2 \geq 2^{h_2} + 2^{h_2} = 2^{h_2+1}$$

Consequence

The running time of find-set operation is $O(\log n)$, where n is the number of make-set operations.
Path Compression during Find-Set Operations

e.find-set()
1 if e ≠ e.parent
2 then e.parent = e.parent.find-set()
3 return
Analysis of Running Time

m total number of operations,

f of which are find-set operations and
n of which are make-set operations

\rightarrow at most $n-1$ union-operations

Union by size:
$O(n + f \log n)$

Find-set operations with path compression:
if $f < n$, $\Theta(n + f \log n)$
if $f \geq n$, $\Theta(f \log \frac{1}{f/n} n)$
Analysis of the Running Time

Theorem (Union by size with path compression)

Using the combined union-by-size and path-compression heuristic, the running time of m disjoint-set operation of n elements is $\Theta(m \cdot \alpha(m,n))$

where $\alpha(m,n)$ is the inverse of the Ackermann’s function
Ackermann Function und Inverse

Ackermann‘s function

\[
\begin{align*}
A(1,j) &= 2^j \quad \text{for } j \geq 1 \\
A(i,1) &= A(i-1,2) \quad \text{for } i \geq 2 \\
A(i,j) &= A(i-1, A(i, j-1)) \quad \text{for } i, j \geq 2
\end{align*}
\]

Inverse Ackermann‘s function

\[
\alpha(m,n) = \min\{i \geq : A(i, \lfloor m/n \rfloor) > \log n\}
\]
Ackermann’s function and its Inverse

\[A(i, \lfloor m / n \rfloor) \geq A(i,1) \]
\[A(2,1) = A(1,2) = 2^2 = 4 \]
\[A(3,1) = A(2,2) = A(1, A(2,1)) = 2^4 = 16 \]
\[A(4,1) = A(3,2) = A(2, A(3,1)) = A(2,16) \]
\[\geq 2^{2^{2^2}} = 2^{65536} \]

\[\alpha(m, n) \leq 4, \text{ für } \log n < 2^{65536} \]
Algorithm Theory
17 Union Find

Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08