

Algorithms for Radio Networks

Wireless Sensor Networks: Lifetime

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

Mittwoch, 25. Januar 12

Energy Saving Methdos

- Schedule for sleep cycles
 - MAC, routing protocol, sensoring
- Optimize transmission routes
 - many hops of few hops
- Selection of nodes depending on the charge battery status
 - data acquisition
 - change of cluster heads
 - route choice may consider battery status
- Reduction of the amount of data
 - data aggregation
 - compression
 - filtering

Lifetime of a Sensor Network

Wireless Sensor Networks (WSN)

- cheap and energy optimized sensors
- send data to sinks

Lifetime of the network

- is hard to analyze
- Depends from
 - network architecture, protocols
 - event or input behavior
 - definition of lifetime
 - hardware, channel characteristics

Lifetime

On the Lifetime of Wireless Sensor Networks

- Yunxia Chen, Qing Zhao, Communication Letters, Vol. 9, No. 11, Nov. 2005
- Theorem
 - For a WSN where
 - E₀: non-rechargable inital energy E₀
 - P_c: constant continuous power consumption in the complete network
 - **E**[E_w]: expected waste of energy
 - λ : average number of reported events
 - **E**[E_r]: expected energy necessary to report an event

$$E[\mathcal{L}] = \frac{\mathcal{E}_0 - E[E_w]}{P_c + \lambda E[E_r]}$$

Algorithms for Radio Networks Prof. Dr. Christian Schindelhauer

Greedy Lifetime Maximization

Question

•

Which sensors should collect the data

Greedy Algorithmus

Choose the sensor with the maximum energy efficiency index γ_i:

$$\gamma_i = e_i - E_r(c_i)$$

- $E_r(c_i)$: Energy for the transport of a message for node i
- e_i: Available energy at the node i

Performance Greedy-Algorithm

Algorithms for Radio Networks Prof. Dr. Christian Schindelhauer

Computer Networks and Telematics University of Freiburg

Lifetime Maximization by Scheduling

Cardei, Du

 Improving Wireless Sensor Network Lifetime through Power Aware Organization, Wireless Networks 11, 333– 340, 2005

Problem

- Measurement points are covered by more than one sensors
- Multiple measurements waste energy
- Solution
 - Activate only the nodes with minimum set-cover

Multiple Coverage of Sensors

Covering Set

Disjoint Set-Cover

Algorithms for Radio Networks Prof. Dr. Christian Schindelhauer Computer Networks and Telematics University of Freiburg

Definition Disjoint Set-Cover (DSC)

Given

- n sensors $S = \{S_1, S_2, ..., S_n\}$
- m measurement points $T=\{T_1, T_2, ..., T_m\}$
- Sensor coverage $S_i \subseteq T$
- Compute
 - Maximal number of disjoint coverings, i.e.
 - disjoint sets M_1 , ..., M_k from S, such that each set covers the set T

Motivation

• The network lifetime increases by a factor of k

Cover (DSC)

Theorem

- DSC is NP-hard for two sets
- DSC is in general NP-hard
- DSC can not be approximated by a factor of 2 without solving an NP-hard problem

Several heuristics are known

Heuristiks for DSC

Slijepcevic Potkonjak 2001

- Power Efficient Organization of Wireless Sensor Networks, IEEE International Conference on Communications
- Greedy algorithm
 - Greedily selects a mimal covering set
 - Removed this one and repeated until no more covering set is found
- Cardei, Du 2006
 - Problem is represented as flow problem
 - This is solved as linear problem
 - The solution gives an approximation of the disjoint setcover problem

Comparison

Slijepcevic Potkonjak 2001

- simple distributed greedy solution
- ► Cardei, Du 2006
 - MC-MIP complex central algorithm

Outlook

Disjoint sets of network nodes may not be useful

- might be too far away from each other
- important relay nodes are not activated

Extension

- Disjoint Connected Set Problem::
- Find vertex-connected subgraph
 - Also NP-hard
- Similar heuristics exist

Disjoint Connected Set Problem

Disjoint Connected Set Problem

Algorithms for Radio Networks

Wireless Sensor Networks: Lifetime

University of Freiburg Technical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

Mittwoch, 25. Januar 12