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‣ Routing target:  
• geometric position 

‣ Idea 
• send message to the neighbor 

closest to the target node 
(greedy strategy) 

!
‣ Advantagements 

• only local decisions 
• no routing tables 
• scalable

Geometric Routing
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‣ Prerequisites 
• Each node knows its position (e.g. GPS) 
• Positions of neighbors are known (beacon messages) 
• Target position is known (location service)

Position Based Routing
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‣ With position information 
• one can forward a message in the "right" direction 

(greedy forwarding) 

Greedy forwarding and 
recovery

s

t

no routing tables,  
no flooding!

transmission 
range

progress boundary  
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First Approaches

‣ Routing in packet radio networks  
‣ Greedy strategies: 

• MFR: Most Forwarding within Radius  [Takagi, Kleinrock 1984] 

• NFP: Nearest with Forwarding Progress  [Hou, Li 1986]

s t

MFR

NFP
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barrier

Greedy forwarding and 
recovery

‣ Greedy forwarding is stopped by barriers  
• (local minima) 

‣ Recovery strategy:  
• Traverse the border of a barrier until a forwarding progress is possible 

(right-hand rule)  

• routing time depends on the size of barriers
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X

‣ Combination of greedy routing and recovery strategy 
‣ Recovery from local minima (right hand rule) 

• Example: GPSR [Karp, Kung 2000]

Position Based Routing

s
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Problems of Recovery

‣ Recovery strategy can produce large 
detours 

‣ Solutions 
• Follow recovery strategy until the 

situation has absolutely improved 
- e.g. until the target is closer 

• Follow a thread 
- e.g. Face Routing strategy 
- by Kuhn, Wattenhover, Zollinger, 

Asymptotically Optimal Geometric 
Mobile Ad-Hoc Routing, DIAL-M 
2002
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Figure 2: The faces of a planar graph (the white
region is the infinite outer face).

Face Routing and AFR work on planar graphs. We use
the term planar graph for a specific embedding of a planar
graph, i.e. we consider Euclidean planar graphs. In this
case, the nodes and edges of a planar graph G partition the
Euclidean plane into contiguous regions called the f faces of
G (see Figure 2 as an illustration). Note that we get f − 1
finite faces in the interior of G and one infinite face around
G.

The main idea of the Face Routing algorithm is to walk
along the faces which are intersected by the line segment st
between the source s and the destination t. For completeness
we describe the algorithm in detail (see Figure 3).

ts

Figure 3: The Face Routing algorithm

Face Routing
0. Start at s and let F be the face which is incident to s

and which is intersected by st in the immediate region
of s.

1. Explore the boundary of F by traversing its edges and
remember the intersection point p of st with the edges

of F which is nearest to t. After traversing all edges, go
back to p. If we reach t while traversing the boundary
of F , we are done.

2. p divides st into two line segments where pt is the not
yet “traversed” part of st. Update F to be the face
which is incident to p and which is intersected by the
line segment pt in the immediate region of p. Go back
to step 1.

In order to simplify the subsequent proofs, we show that
Face Routing terminates in linear time.

Lemma 4.1. The Face Routing algorithm reaches the des-
tination t after traversing at most O(n) edges where n is the
number of nodes.

Proof. First we show that the algorithm terminates. By
the choices of the faces F in step 0 and 2, respectively, we
see that in step 1 we always find a point p which is nearer
to t than the previous p where we start the tour around
F . Therefore we are coming nearer to t with each iteration,
and since there are only finitely many intersections between
st and the edges of G, we reach t in a finite number of
iterations.

For the performance analysis, we see that by choosing p as
the st-“face boundary” intersection which is nearest to t, we
will never traverse the same face twice. Now, we partition
the edges E into two subsets E1 and E2 where E1 are the
edges which are incident to only one face (the same face lies
on both sides of the edge) and E2 are the edges which are
incident to two faces (the edge lies between two different
faces). During the exploration of a face F in step 2, an
edge of E2 is traversed at most twice and an edge of E1 is
traversed at most four times. Since the edges of E1 appear
in only one face and the edges of E2 appear in two faces, all
edges of E are traversed at most four times during the whole
algorithm. Each face in a planar connected graph (with at
least 4 nodes) has at least three edges on its boundary. This
together with the Euler polyhedral formula (n−m+ f = 2)
yields that the number of edges m is bounded by m ≤ 3n−6
which proves the lemma.

In order to obtain our new algorithm AFR, we are now going
to change Face Routing in two steps. In a first step we
assume that an upper-bound cd on the (Euclidean) length
cd(p∗) of a shortest route p∗ from s to t on graph G is
known to s at the beginning. We present a geometric ad-
hoc routing algorithm which reaches t with link distance cost
at most O(cd

2).

Bounded Face Routing (BFR[cd]). Let E be the ellipse
which is defined by the locus of all points the sum of whose
distances from s and t is cd, i.e. E is an ellipse with foci s
and t. By the definition of E , the shortest path (in 2) from
s to t via a point q outside E is longer than cd. Therefore,
the best path from s to t on G is completely inside or on E .
We change step 1 of Face Routing such that we always stay
within E .

0. Start at s and let F be the face which is incident to s
and which is intersected by st in the immediate region
of s.
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Greedy forwarding and 
recovery

‣ Right-hand rule needs planar topology 
• otherwise endless recovery cycles can 

occur 
‣ Therefor the graph needs to be made 

planar 
• erase crossing edges 

‣ Problem 
• needs communication between nodes 
• must be done careful in order to 

prevent graph from becoming 
disconnected

!9
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Lower Bound
‣ Kuhn, Wattenhover, Zollinger, 

Asymptotically Optimal Geometric 
Mobile Ad-Hoc Routing, DIAL-M 
2002

s

t

Time: Ω(d2)

time = #hops, traffic = #messages

d = length of shortest path

are various suggestions on how to construct a planar sub-
graph of the unit disk graph in a distributed way. Often
the intersection between the UDG and the Relative Neigh-
borhood Graph (RNG [24]) or the Gabriel Graph (GG [8]),
respectively, have been proposed. In the RNG an edge be-
tween nodes u and v is present iff no other node w is closer
to u and to v than u is to v. In the Gabriel Graph an edge
between u and v is present iff no other node w is inside or
on the circle with diameter uv. The Relative Neighborhood
Graph and the Gabriel Graph are easily constructed in a dis-
tributed manner. There have been other suggestions, such
as the intersection between the Delaunay triangulation and
the unit disk graph [17]. All mentioned graphs are connected
provided that the unit disk graph is connected as well. We
use the Gabriel Graph, since it meets all requirements as
shown in the following lemma.

Lemma 4.4. In the Ω(1)-model the shortest path for any
of the considered metrics (Euclidean distance, link distance,
and energy) on the Gabriel Graph intersected with the unit
disk graph is only by a constant longer than the shortest path
on the unit disk graph for the respective metric.

e’
e’’

e

w

u

v

Figure 7: The unit disk graph contains an energy
optimal path.

Proof. We show that at least one best path with respect
to the energy metric on the UDG is also contained in GG∩
UDG. Suppose that e = (u, v) is an edge of an energy
optimal path p on the UDG. For the sake of contradiction
suppose that e is not contained in GG ∩ UDG. Then there
is a node w in or on the circle with diameter uv (see Figure
7). The edges e′ = (u, w) and e′′ = (v, w) are also edges of
the UDG and because w is in the described circle, we have
e′2 +e′′2 ≤ e2. If w is inside the circle with diameter uv, the
energy for the path p′ := p \ {e} ∪ {e′, e′′} is smaller than
the energy for p and p no energy-optimal path. If w is on
the above circle, p′ is an energy-optimal path as well and
the argument applies recursively. Using Lemma 3.1, we see
that the optimal path costs with respect to the Euclidean
and the link distance metrics are only by a constant factor
greater than the energy cost of p. This concludes the proof.

Lemma 4.4 directly leads to Theorem 4.5.

Theorem 4.5. Let p∗
τ for τ ∈ {d, ℓ, E} be an optimal path

with respect to the corresponding metric on the unit disk
graph in the Ω(1)-model. We have

∀τ ∈ {d, ℓ, E} : cτ (AFR) ∈ O c2
τ (p∗

τ )

when applying AFR on GG ∩ UDG in the Ω(1)-model.

Proof. The theorem directly follows from Lemma 3.1,
Lemma 4.3, and Lemma 4.4.

5. LOWER BOUND
In this section we give a constructive lower bound for ge-

ometric ad-hoc routing algorithms.

w

Figure 8: Lower bound graph

Theorem 5.1. Let the cost of a best route for a given
source destination pair be c. Then any deterministic (ran-
domized) geometric ad-hoc routing algorithm has (expected)
cost Ω(c2) for link, distance, or energy cost.

Proof. We construct a family of networks as follows. We
are given a positive integer k and define a Euclidean graph
G (see Figure 8): On a circle we evenly distribute 2k nodes
such that the distance between two neighboring points is ex-
actly 1; thus, the circle has radius r ≈ k/π. For every second
node of the circle we construct a chain of ⌈r/2⌉ − 1 nodes.
The nodes of such a chain are arranged on a line pointing
towards the center of the circle; the distance between two
neighboring nodes of a chain is exactly 1. Node w is one
arbitrary circle node with a chain: The chain of w consists
of ⌈r⌉ nodes with distance 1. The last node of the chain of
w is the center node; note that the edge to the center node
does not need to have distance 1.

Please note that the unit disk graph consists of the edges
on the circle and the edges on the chains only. In particular,
there is no edge between two chains because all chains except
the w chain end strictly outside radius r/2. Note that the
graph has k chains with Θ(k) nodes each.

We route from an arbitrary node on the circle (the source
s) to the center of the circle (the destination t). An optimal
route between s and t follows the shortest path on the circle
until it hits node w, and then directly follows w’s chain to
t with link cost c ≤ k + r + 1 ∈ O(k). An ad-hoc routing
algorithm with routing tables at each node will find this best
route.
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A Virtual Cell Structure
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transmission radius 
(Unit Disk Graph)

v

nodes exchange beacon messages 
⇒ node v knows positions of ist neighbors

Rührup et al. Online Multi-Path Routing in a Maze, ISAAC 2006
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v

node cell link cell barrier cell

each node classifies the cells  
in ist transmission range

A Virtual Cell Structure
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Routing based on the Cell 
Structure

‣ Routing based on the cell structure 
uses cell paths  
cell path  
• = sequence of orthogonally 

neighboring cells 
‣ Paths  

• in the unit disk graph and cell paths 
are equivalent up to a constant factor 

‣ no planarization strategy needed 
• required for recovery using the  right-

hand rule

!13
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Routing based on the Cell 
Structure
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node cell link cell barrier cell

v

virtual forwarding using cells

w

physical forwarding from v to w,  
if visibility range is exceeded
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Performance Measures

‣ competitive ratio: 
!

‣ competitive time ratio of a routing algorithm 
• h = length of shortest barrier-free path 
• algorithm needs T rounds to deliver a message

!15

solution of the algorithm
optimal offline solution

h

T

single-path
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Comparative Ratios

‣ optimal (offline) solution for traffic: 
• h messages (length of shortest path) 

‣ Unfair, because 
• offline algorithm knows the barriers 
• but every online algorithm has to pay  

exploration costs 
‣ exploration costs 

• sum of perimeters of all barriers (p) 
‣ comparative traffic ratio  

!16

M = # messages used 
h = length of shortest path 
p = sum of perimeters

h
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Comparative Ratios

‣ measure for time efficiency: 
• competitive time ratio 
!

‣ measure for traffic efficiency: 
• comparative traffic ratio  
!

‣ Combined comparative ratio 
• time efficiency and traffic efficiency

!17
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Single Path Strategy

‣ no parallelism 
• traffic-efficient (time = traffic) 
• example: GuideLine/Recovery 

‣ follow a guide line connecting source 
and target 

‣ traverse all barriers intersecting the 
guide line 

‣ Time and Traffic:

!18
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Multi-path Strategy

‣ speed-up by parallel exploration 
• increasing traffic 
• example: Expanding Ring Search 

‣ start flooding with restricted search 
depth 

‣ if target is not in reach then 
• repeat with double search depth 

‣ Time 
‣ Traffic

!19
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Algorithms under Comparative 
Measures
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GuideLine/Recovery  
(single-path)

Expanding Ring Search  
(multi-path)

traffictime

scenario

maze

open space

GuideLine/Recovery  
(single-path)

Expanding Ring Search  
(multi-path)

time  
ratio

traffic 
ratio

combined 
ratio

Is that good?

It depends ... on the
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The Alternating Algorithm

‣ uses a combination of both strategies: 
1. i = 1 
2. d = 2i 
3. start GuideLine/Recovery with time-to-live = d3/2 
4. if the target is not reached then 

 start Flooding with time-to-live = d 
5. if the target is not reached then 

 i = i+1  
 goto line 2 
!

‣ Combined comparative ratio: 

!21
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The JITE Algorithmus

‣ Complex algorithm 
‣ Message efficient parallel BFS 

(breadth first search)  
• using Continuous Ring Search 

‣ Just-In-Time Exploration (JITE)  
• construction of search path instead of 

flooding 
‣ Search paths surround barriers 
‣ Slow Search 

• slow BFS on a sparse grid 
‣ Fast Exploration 

• Construction of the sparse grid near to 
the shoreline

!22

Rührup et al. Online Multi-Path Routing in a Maze, ISAAC 2006
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Slow Search & Fast Exploration

‣ Slow Search visits only explored 
paths 
!

‣ Fast Exploration is started in the 
vicinity of the BFS-shoreline 
!

‣ Exploration must be terminated before 
a frame is reached by the BFS-
shoreline

!23
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Performance of Geometric 
Routing Algorithms 
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Rührup et al. Online Multi-Path Routing in a Maze, ISAAC 2006
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Summary

‣ Geometric Routing 
• is a scalable alternative with only local 

information 
‣ Recovery strategies 

• are necessary since barriers might 
occur 

‣ Planarization 
• underlying communication graph 

should be planar 
• erase edges or use cell structure 

‣ Performance 
• should be measured by the competitive 

or comparative ratio 
!

‣ JITE 
• best solution, but only of theoretical 

interest 
‣ Face Routing 

• only of theoretical interest, because 
only a small fractions of the edges are 
used 

‣ Real-world Solutions 
• Flooding 
• Alternating algorithm 
• Greedy with right-hand recovery 
• Greedy with flooding recovery

!25
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