

Algorithms for Radio Networks

Multiplexing

University of Freiburg Institute of Computer Science Computer Networks and Telematics Christian Schindelhauer

Multiple Use of the Medium

Spatial Multiplexing

- Parallel and exclusive use of transmission channels
 - e.g. Extra lines / cells / directional antenna

Frequency division multiplexing

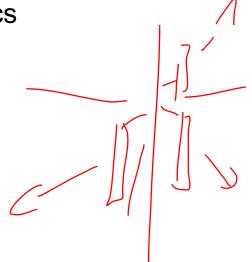
- Multiple signals to be transmitted in a frequency range of bundled;
- In radio transmission, different frequencies are assigned to different stations.

Time division multiplexing

 Delayed transmission of multiple signals

Code division multiplexing

- Coding of the signal into orthogonal codes, which can now be broadcast simultaneously on one frequency
- Decoding with overlay also possible


Multiple-Input Multiple-Output

- Sending and receiving antennas by several
- Using the spatial and temporal information about location of several waves
 - e.g. 802.11n

- Polarization

Spatial distribution (space multiplexing)

- Utilization of distance loss for the parallel operation of different radio cells \rightarrow cellular networks
- Using directional antennas for communications directed requested
- GSM antennas with directional characteristics
- Radio with a satellite dish
- laser communications
- infrared communication

Frequency Multiplexing

- Allocation of bandwidth in frequency sections
- Spread of the channels and hopping
 - Direct Sequence Spread Spectrum (DSSS)
 - Xor a signal with a pseudo-random number sequence at the transmitter and receiver (Relates to code-division multiplexing)
 - Other signals appear as background noise
- Frequency Hopping Spread Spectrum (FHSS)
 - Frequency change by pseudo-random numbers
 - two versions
 - Quick change (almost hopping): Multiple frequencies per user data bits
 - Slowly changing (slow hopping): Multiple user bits per frequency

Bluetooth 79

Time Multiplexing

- Temporal distribution of sender-/receiver channel
- Participants receive exclusive periods (slots) on the media
- Accurate synchronization necessary
- Coordination necessary, or rigid division

Direct Sequence Spread Spectrum

- A chip is a bit sequence (given by {-1, +1}), which encode a smaller set of symbols
- E.g. Transmission signal: 0 = (+1,+1,-1), 1=(-1,-1,+1)

Coding by calculating the inner product $c_i s_i$ of the received signal and the chip $c_0 = -c_1$:

$$\sum_{i=1}^{m} c_{0,i} s_i \qquad \qquad \sum_{i=1}^{m} c_{1,i} s_i$$

- In the case of a superimposed signal, the original signal can be decoded by filter
- DSSS is used by GPS, WLAN, UMTS, ZigBee, Wireless USB based on the Barker code

Т

• Here for all v<m

$$\left|\sum_{i=1}^{N-v} a_i a_{i+v}\right| \le 1$$

Barker Code für 11Bit: +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1 ٠

Code Division Multiple Access (CDMA)

- CDMA (Code Division Multiple Access)
 - e.g. GSM (Global System for Mobile Communication)
 - or UMTS (Universal Mobile Telecommunications System)
- Uses chip-sequence with
 - $\bullet \quad C_i \in \{\text{-1,+1}\}^m$
 - $-C_i = (-C_{i,1}, -C_{i,2}, \dots, -C_{i,m})$
- so that the normalized inner product for all $i \neq j$ the result is 0.

$$C_i \bullet C_j = \frac{1}{m} C_i \cdot (C_j)^T = \frac{1}{m} \sum_{k=1}^m C_{i,k} C_{j,k} = 0.$$

- Synchronized recipients get a linear combination of A and B
- Multiplying by the desired chip sequence yields the desired message.

CDMA: Example 1

- Sender A:
 - 0 = (-1,-1)
 - 1 = (+1,+1)
- Sender B:
 - 0 = (-1,+1)
 - 1 = (+1,-1)
- A sends 0, B sends 0:
 - Result: (-2,0)
- C receives (-2,0):
 - Decoding of A: (-2,0) (-1,-1) = (-2)(-1) + 0(-1) = 2
 - A has therefor sent 0 because result is positive

CDMA: Example 2

Sample-code:

- Code C_A = (+1,+1,+1,+1)
- Code C_B = (+1,+1,-1,-1)
- Code C_C = (+1,-1,+1,-1)
- A sends Bit 0, B sends Bit 1, C sends nothing
 - $V = C_1 + (-C_2) = (0,0,2,2)$
- Decoding for A: V $C_1 = (0,0,2,2) (+1,+1,+1,+1) = 4/4 = 1$
 - results in Bit 0
- Decoding for B: V $C_2 = (0,0,2,2) (+1,+1,-1,-1) = -4/4 = -1$
 - results in Bit 1
- Decoding for C: V C₃ = (0,0,2,2) (+1,-1,+1,-1) = 0
 - results in: no Signal.

Algorithms for Radio Networks

Multiplexing

University of Freiburg Institute of Computer Science Computer Networks and Telematics Christian Schindelhauer

