Algorithms for Radio Networks

MACA

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Christian Schindelhauer
Problem of Wireless Media Access

- Unknown number of participants
 - broadcast
 - many nodes simultaneously
 - only one channel available
 - asymmetric situations
- Collisions produce interference
- Media Access
 - Rules to participate in a network
Aims

- Delay
- Throughput
- Fairness
- Robustness and stability
 - against disturbances on the channel
 - against mobility
- Scalability
- Energy efficiency
Methods

› Organisation
 • Central control
 • Distributed control

› Access
 • without contention
 • with contention
Problem of Media Access

- CSMA/CD not applicable
 - Media is only locally known
 - Bounded range
- Hidden Terminal
 - Receiver collision despite carrier sensing
- Exposed Terminal
 - Opportunity costs of unsent messages because of carrier sensing
Hidden Terminal and Exposed Terminal

Hidden Terminal Problem

Exposed Terminal Problem
Alternative Solutions

- **Extended hardware**
 - Addition carrier signal blocks and ensures transmission

- **Centralized solution**
 - Base station is the only communication partner
 - Base station coordinates the media access
MACA

Alternative names:
- Carrier Sensing Multiple Access / Collision Avoidance (CSMA/CA)
- Medium Access with Collision Avoidance (MACA)

Aim
- Solution of the Hidden and Exposed Terminal Problem

Idea
- Channel reservation before the communication
- Minimization of collision cost
Request to Send

Sender

Receiver

Reserved area

RTS
Clear to Send

- Sender
- CTS
- Receiver
- Reserved area
RTS/CTS
MACA
CSMA/CA
Details for Sender

- A sends RTS
 - waits certain time for CTS
- If A receives CTS in time
 - A sends packet
 - otherwise A assumes a collision at B
 - doubles Backoff-counter
 - and chooses a random waiting time from
 \{1,\ldots,\text{Backoff}\}
 - After the waiting time A repeats from the beginning
Details for Receiver

- After B has received RTS
 - B sends CTS
 - B waits some time for the data packet
 - If the data packet arrives then the process is finished
 - Otherwise B is not blocked
Details for Third Parties

- C receives RTS of A
 - waits certain time for CTS of B
- If CTS does not occur
 - C is free for own communication
- If CTS of B has been received
 - then C waits long enough such that B can receive the data packet
Details for Third Parties

- D receives CTS of B
 - waits long enough such that B can receive the data packet
- E receives RTS of A and CTS of B
 - waits long enough such that B can receive the data packet
Hidden Terminal because of Mobility

- A sends RTS to B
- B sends CTS to A
- C moves in this time close enough to B to disturb the transmission
Hidden Terminal
the parallel case

- A sends RTS to B
- B sends CTS
- In parallel C sends RTS to D
- D answers with CTS
 - while A has started sending data
- C sends to D (and B)
Exposed Terminals in MACA

- B wants to send to A
- C wants to send to D
Conclusions

MACA

- solves the Hidden Terminal Problem only partially
- Exposed Terminal Problem is not solved
Algorithms for Radio Networks

MACA