

Algorithms for Radio Networks

Geometric Routing

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Christian Schindelhauer

Geometric Routing

Routing target:

geometric position

Idea

 send message to the neighbor closest to the target node (greedy strategy)

Advantagements

- only local decisions
- no routing tables
- scalable

Position Based Routing

Prerequisites

outdoor Zebra -Net

- Each node knows its position (e.g. GPS)
- Positions of neighbors are known (beacon messages)
- Target position is known (location service)

Greedy forwarding and recovery

With position information

one can forward a message in the "right" direction (greedy forwarding) no routing tables, no flooding! progress boundary transmission (circle around the range destination)

First Approaches

- Routing in packet radio networks
- Greedy strategies:
 - MFR: Most Forwarding within Radius [Takagi, Kleinrock 1984]
 - NFP: Nearest with Forwarding Progress [Hou, Li 1986]

Greedy forwarding and recovery

- Greedy forwarding is stopped by barriers
 - (local minima)
- Recovery strategy:
 - Traverse the border of a barrier until a forwarding progress is possible (right-hand rule)
 - routing time depends on the size of barriers

Position Based Routing

- Combination of greedy routing and recovery strategy
- Recovery from local minima (right hand rule)
 - Example: GPSR [Karp, Kung 2000]

Problems of Recovery

Recovery strategy can produce large detours

- Solutions
 - Follow recovery strategy until the situation has absolutely improved
 - e.g. until the target is closer
 - Follow a thread
 - e.g. Face Routing strategy
 - by Kuhn, Wattenhover, Zollinger, Asymptotically Optimal Geometric Mobile Ad-Hoc Routing, DIAL-M 2002

Greedy forwarding and recovery

- Right-hand rule needs planar topology
 - otherwise endless recovery cycles can occur
- Therefor the graph needs to be made planar
 - erase crossing edges
- Problem
 - needs communication between nodes
 - must be done careful in order to prevent graph from becoming disconnected

Lower Bound

Kuhn, Wattenhover, Zollinger,
 Asymptotically Optimal Geometric
 Mobile Ad-Hoc Routing, DIAL-M
 2002

d = length of shortest path

time = #hops, traffic = #messages

Time: $\Omega(d^2)$

A Virtual Cell Structure

Rührup et al. Online Multi-Path Routing in a Maze, ISAAC 2006

(Unit Disk Graph)

A Virtual Cell Structure

Routing based on the Cell Structure

- Routing based on the cell structure uses cell paths cell path
 - = sequence of orthogonally neighboring cells
- Paths
 - in the unit disk graph and cell paths are equivalent up to a constant factor
- no planarization strategy needed
 - required for recovery using the righthand rule

Routing based on the Cell Structure

Performance Measures

- competitive ratio:
- solution of the algorithm optimal offline solution

- h = length of shortest barrier-free path
- algorithm needs T rounds to deliver a message

$$\mathcal{R}_t := \frac{T}{h}$$

single-path

Comparative Ratios

optimal (offline) solution for traffic:

- h messages (length of shortest path)
- Unfair, because
 - offline algorithm knows the barriers
 - but every online algorithm has to pay exploration costs
- exploration costs
 - sum of perimeters of all barriers (p)
- comparative traffic ratio

$$\mathcal{R}_{Tr} := \frac{M}{h+p}$$

h = length of shortest path

p = sum of perimeters

Comparative Ratios

- measure for time efficiency:
 - competitive time ratio

$$\mathcal{R}_t := \frac{T}{h}$$

- measure for traffic efficiency:
 - comparative traffic ratio

$$\mathcal{R}_{Tr} := \frac{M}{h+p}$$

- ullet Combined comparative ratio $\mathcal{R}_c := \max\{\mathcal{R}_t, \mathcal{R}_{Tr}\}$
 - time efficiency and traffic efficiency

Single Path Strategy

- no parallelism
 - traffic-efficient (time = traffic)
 - example: GuideLine/Recovery
- follow a guide line connecting source and target
- traverse all barriers intersecting the guide line
- ullet Time and Traffic: $\mathcal{O}(h+p)$

Competitive time votio:
$$\frac{h+P}{h} = 1+\frac{P}{h}$$

Multi-path Strategy

- speed-up by parallel exploration
 - increasing traffic
 - example: Expanding Ring Search
- start flooding with restricted search depth
- if target is not in reach then
 - repeat with double search depth
- ▶ Time $\mathcal{O}(h)$ ←
- Traffic $\mathcal{O}(h^2)$

$$\frac{h}{h} = 1$$

$$+ ruffic \frac{h^2}{h+\rho} = \frac{h^2}{h} = h$$

Algorithms under Comparative Measures

	time	traffic
GuideLine/Recovery (single-path)	$\mathcal{O}(h$	+p)
Expanding Ring Search (multi-path)	$\mathcal{O}(h)$	$O(h^2)$

$$\mathcal{R}_t := \frac{T}{h} M$$

$$\mathcal{R}_{Tr} := \frac{M}{h+p}$$

Is that good?

It depends on the	scenario	time ratio	traffic ratio	combined ratio
GuideLine/Recovery (single-path)	$\underbrace{p}_{p} = h^{2}$	$\mathcal{O}(h)$	$\mathcal{O}(1)$	$\mathcal{O}(h)$
Expanding Ring Search (multi-path)	open space $p < h$	$\mathcal{O}(1)$	$\mathcal{O}(h)$	$\mathcal{O}(h)$

The Alternating Algorithm

uses a combination of both strategies:

- 1. i = 1
- 2. $d = 2^i$

- 4. if the target is not reached thenstart Flooding with time-to-live = d
- 5. if the target is not reached theni = i+1goto line 2
- Combined comparative ratio: $\mathcal{R}_c = \mathcal{O}(\sqrt{h})$

The JITE Algorithmus

Rührup et al. Online Multi-Path Routing in a Maze, ISAAC 2006

- Complex algorithm
- Message efficient parallel BFS (breadth first search)
 - using Continuous Ring Search
- Just-In-Time Exploration (JITE)
 - construction of search path instead of flooding
- Search paths surround barriers
- Slow Search
 - slow BFS on a sparse grid
- **▶** Fast Exploration
 - Construction of the sparse grid near to the shoreline

Slow Search & Fast Exploration

- Slow Search visits only explored paths
- Fast Exploration is started in the vicinity of the BFS-shoreline
- Exploration must be terminated before a frame is reached by the BFSshoreline

Performance of Geometric Routing Algorithms

Strategy	Time	Traffic	Comb. Comp. Ratio			
Exp. Ring Search [9, 18]	$\mathcal{O}(d)$	$\mathcal{O}(d^2)$	$\mathcal{O}(d)$			
Lucas' Algorithm [13]	$\widetilde{\mathcal{O}(d+p)}$	$\mathcal{O}(d+p)$	$\mathcal{O}(d)$			
Alternating Strategy [20]	$\mathcal{O}(d^{3/2})$	$\mathcal{O}(\min\{d^2,d^{3/2}+p\})$	$\mathcal{Q}(\sqrt{d})$			
Selective Flooding [21]	$d \cdot 2^{\mathcal{O}\left(\sqrt{rac{\log d}{\log \log d}} ight)}$	$\mathcal{O}(d) + p d^{\mathcal{O}\left(\sqrt{rac{\log\log d}{\log d}} ight)}$	$d^{\mathcal{O}\left(\sqrt{rac{\log\log d}{\log d}} ight)}$			
JITE (this paper)	$\mathcal{O}(d)$	$\mathcal{O}((d+p)\log^2 \overline{d})$	$\mathcal{O}(\log^2 d)$			
Online Lower Bound (cf. [3])	$\Omega(d)$	$\Omega(d+p)$	$\Omega(1)$			
Düberun et al. Online Multi Deth Deuting in a Mare 10440 0000						

Rührup et al. Online Multi-Path Routing in a Maze, ISAAC 2006

Summary

Geometric Routing

is a scalable alternative with only local information

Recovery strategies

are necessary since barriers might occur

▶ Planarization

- underlying communication graph should be planar
- erase edges or use cell structure

Performance

should be measured by the competitive or comparative ratio

JITE

best solution, but only of theoretical interest

Face Routing

 only of theoretical interest, because only a small fractions of the edges are used

Real-world Solutions

- Flooding
 - Alternating algorithm
- Greedy with right-hand recovery
- Greedy with flooding recovery

Algorithms for Radio Networks

Geometric Routing

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Christian Schindelhauer

Mar Ze

· Randon Wall

e Right-hand Vule

flooding /

Dubai 1960 primete f

expanding ving Seaus

