Algorithms for Radio Networks

Geometric Routing

University of Freiburg
Technical Faculty
Computer Networks and Telematics Christian Schindelhauer

Geometric Routing

- Routing target:
- geometric position
- Idea
- send message to the neighbor closest to the target node (greedy strategy)
- Advantagements
- only local decisions
- no routing tables
- scalable
$(0,8)$

Position Based Routing

- Prerequisites
- Each node knows its position (e.g. GPS)

- Positions of neighbors are known (beacon messages)
- Target position is known (location service)
$(0,8)$

Greedy forwarding and recovery

- With position information
- one can forward a message in the "right" direction (greedy forwarding)
no routing tables, no flooding!

First Approaches

- Routing in packet radio networks
- Greedy strategies:
- MFR: Most Forwarding within Radius [Takagi, Kleinrock 1984]
- NFP: Nearest with Forwarding Progress [Hou, Li 1986]

Greedy forwarding and recovery

- Greedy forwarding is stopped by barriers
- (local minima)
- Recovery strategy:
- Traverse the border of a barrier until a forwarding progress is possible (right-hand rule)
- routing time depends on the size of barriers

Position Based Routing

- Combination of greedy routing and recovery strategy
- Recovery from local minima (right hand rule)
- Example: GPSR [Karp, Kung 2000]

Problems of Recovery

- Recovery strategy can produce large detours
- Solutions
- Follow recovery strategy until the situation has absolutely improved
- e.g. until the target is closer
- Follow a thread
- e.g. Face Routing strategy
- by Kuhn, Wattenhover, Zollinger, Asymptotically Optimal Geometric Mobile Ad-Hoc Routing, DIAL-M 2002
Kuh m

Greedy forwarding and recovery

- Right-hand rule needs planar topology
- otherwise endless recovery cycles can occur
- Therefor the graph needs to be made planar
- erase crossing edges
- Problem
- needs communication between nodes
- must be done careful in order to prevent graph from becoming disconnected

Lower Bound

- Kuhn, Wattenhover, Zollinger, Asymptotically Optimal Geometric Mobile Ad-Hoc Routing, DIAL-M 2002
$\mathrm{d}=$ length of shortest path
time $=$ \#hops, traffic $=$ \#messages

A Virtual Cell Structure

A Virtual Cell Structure

Routing based on the Cell Structure

- Routing based on the cell structure uses cell paths cell path
- = sequence of orthogonally neighboring cells
- Paths
- in the unit disk graph and cell paths are equivalent up to a constant factor
- no planarization strategy needed
- required for recovery using the righthand rule

Routing based on the Cell Structure

\square
\square barrier cell

Performance Measures

competitive ratio: $\frac{\text { solution of the algorithm }}{\text { optimal offline solution }} \propto$

- competitive time ratio of a routing algorithm
- $h=$ length of shortest barrier-free path
- algorithm needs T rounds to deliver a message

$$
\mathcal{R}_{t}:=\frac{T}{h}
$$

Comparative Ratios

- optimal (offline) solution for traffic:
- h messages (length of shortest path)
- Unfair, because
- offline algorithm knows the barriers
- but every online algorithm has to pay exploration costs
- exploration costs
- sum of perimeters of all barriers (p)

- comparative traffic ratio

$$
\mathcal{R}_{\operatorname{Tr}}:=\frac{M \approx}{h+p} \quad \begin{aligned}
& \begin{array}{l}
M=\# \text { messages used } \\
h=\text { length of shortest path } \\
p=\text { sum of perimeters }
\end{array}
\end{aligned}
$$

Comparative Ratios

- measure for time efficiency:
- competitive time ratio

$$
\mathcal{R}_{t}:=\frac{T}{h}
$$

- measure for traffic efficiency: $\quad \mathcal{R}_{T r}:=\frac{M}{h+p}$
- comparative traffic ratio
- Combined comparative ratio $\mathcal{R}_{c}:=\max \left\{\mathcal{R}_{t}, \mathcal{R}_{T r}\right\}$
- time efficiency and traffic efficiency

Single Path Strategy

- no parallelism
- traffic-efficient (time = traffic)
- example: GuideLine/Recovery
- follow a guide line connecting source and target
- traverse all barriers intersecting the guide line
- Time and Traffic: $\mathcal{O}(h+p)$

$$
\begin{aligned}
& \text { competitive time vatio: } \frac{h+p}{h}=1+\frac{p}{h} \\
& \text { traffic vatio: } \frac{h+p}{h+p}=\text { Or }^{h} \text { time. } h+p
\end{aligned}
$$

Multi-path Strategy

- speed-up by parallel exploration
- increasing traffic
- example: Expanding Ring Search
- start flooding with restricted search depth
- if target is not in reach then
- repeat with double search depth
- Time $\mathcal{O}(h) G$
- Traffic $\mathcal{O}\left(h^{2}\right)$

Algorithms under Comparative Measures

	time	traffic
GuideLine/Recovery (single-path)	$\mathcal{O}(h+p)$	
Expanding Ring Search (multi-path)	$\mathcal{O}(h)$	$\mathcal{O}\left(h^{2}\right)$

$$
\begin{array}{|l|}
\mathcal{R}_{t}:=\frac{T}{h} \\
\mathcal{R}_{T r}:=\frac{M}{h+p}
\end{array}
$$

Is that good?

It depends ...	on the	scenario	time ratio	traffic ratio
combined ratio				
GuideLine/Recovery (single-path)	maze $p=h^{2}$	$\underline{\mathcal{O}(h)}$	$\mathcal{O}(1)$	$\mathcal{O}(h)$
Expanding Ring Search (multi-path)	open space $p<h$	$\mathcal{O}(1)$	$\underline{\mathcal{O}(h)}$	$\mathcal{O}(h)$

The Alternating Algorithm

- uses a combination of both strategies:

1. $i=1$
2. $d=2^{i}$
3. start GuideLine/Recovery with time-to-live $=d^{3 / 2}$

4. if the target is not reached then
start Flooding with time-to-live $=\mathrm{d}$
5. if the target is not reached then
$\mathrm{i}=\mathrm{i}+1$
goto line 2

- Combined comparative ratio: $\mathcal{R}_{c}=\mathcal{O}(\sqrt{h})$

The JITE Algorithmus

Rührup et al. Online Multi-Path Routing in a Maze, ISAAC 2006

- Complex algorithm
- Message efficient parallel BFS (breadth first search)
- using Continuous Ring Search
- Just-In-Time Exploration (JITE)
- construction of search path instead of flooding
- Search paths surround barriers
- Slow Search
- slow BFS on a sparse grid
- Fast Exploration
- Construction of the sparse grid near to the shoreline

Slow Search \& Fast Exploration

- Slow Search visits only explored paths
- Fast Exploration is started in the vicinity of the BFS-shoreline
- Exploration must be terminated before a frame is reached by the BFSshoreline

Performance of Geometric Routing Algorithms

Summary

- Geometric Routing
- is a scalable alternative with only local information
Recovery strategies
- are necessary since barriers might occur
- Planarization
- underlying communication graph should be planar
- erase edges or use cell structure
- Performance
- should be measured by the competitive or comparative ratio

JITE

- best solution, but only of theoretical interest

Face Routing

- only of theoretical interest, because only a small fractions of the edges are used
- Real-world Solutions
- Flooding
- Alternating algorithm ?
$\rightarrow ヤ^{\bullet}$ Greedy with right-hand recovery
- Greedy with flooding recovery

Algorithms for Radio Networks

Geometric Routing

University of Freiburg
Technical Faculty
Computer Networks and Telematics Christian Schindelhauer

$$
M_{a} z c
$$

$$
\begin{aligned}
& \text { - Randon Walh } \\
& \text { - Right-had } \\
& \text { vule }
\end{aligned}
$$

flooding

0
c

0

$$
7
$$

lxpanding vingsearis

$$
\frac{d^{3 / 2}}{d}=\frac{\sqrt{d} d^{3 / 2} \quad d^{2}}{d^{3 / 2}}=\sqrt{d}
$$

