

Algorithms for Radio Networks

Network Coding

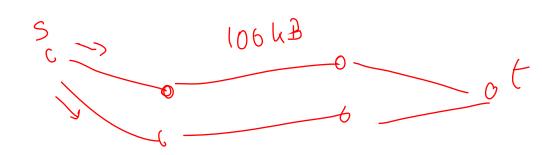
University of Freiburg Technical Faculty Computer Networks and Telematics Christian Schindelhauer

Motivation

Optimize data flow from source to target

• Definition:

- (Single-commodity) maximum flow problem
- Given
 - a graph G=(V,E)
 - -_a capacity function w:E \rightarrow R⁺₀,
 - source set S and target set T
- Find a maximum flow from S to T



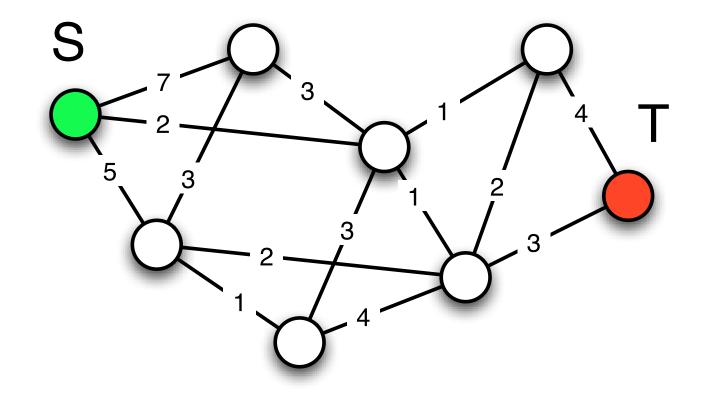
- A flow is a function
 - $f: E \to R_0^+ \text{ such that }$
 - for all $e \in E$: $f(e) \le w(e)$
 - for all e ∉ E: f(e) = 0
 - for all $u, v \in V$: $f(u, v) \ge 0$ $\forall u \in V \setminus (S \cup T)$

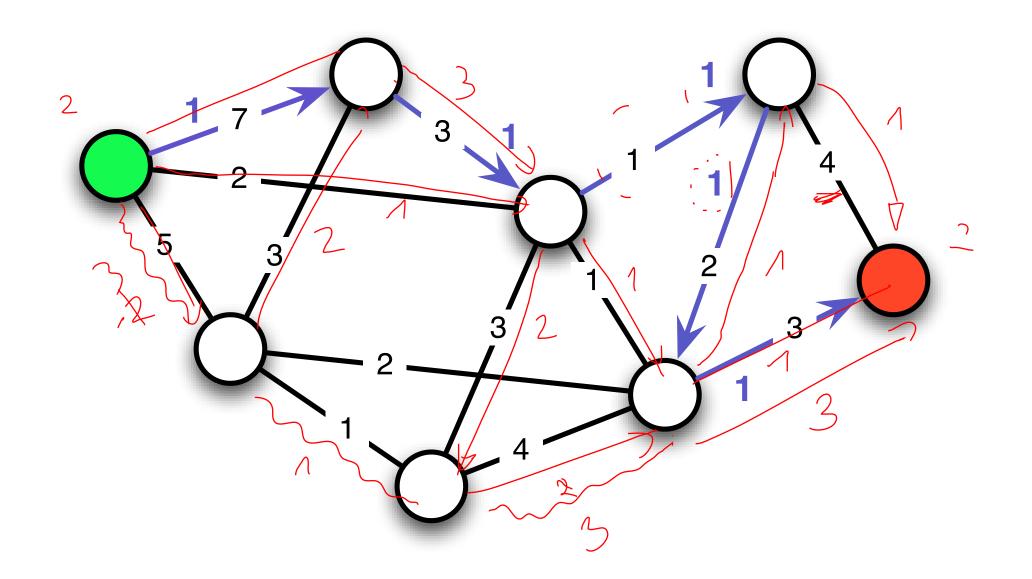
$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$

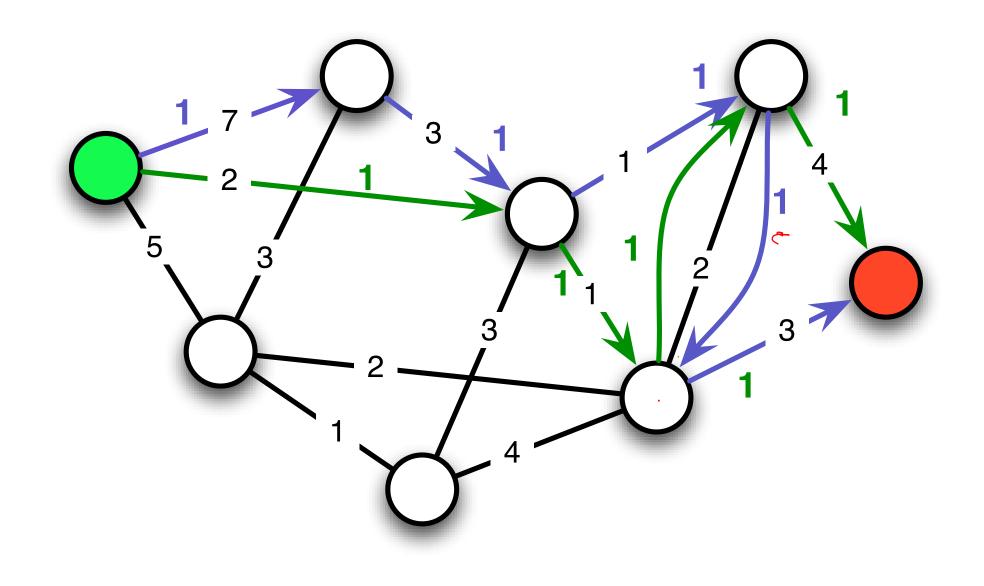
Maximize flow

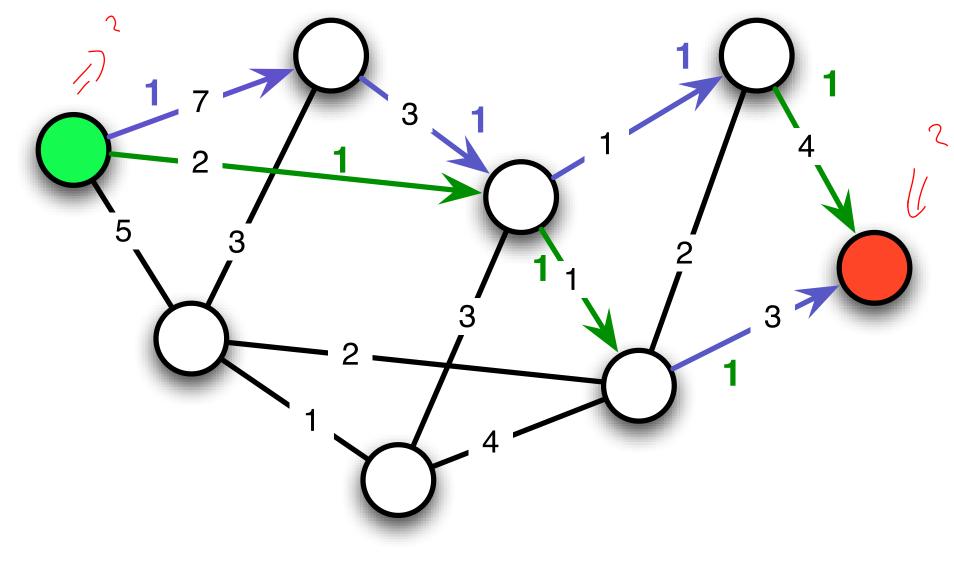
 $\sum_{u \in S} \sum_{v \in V} f(u, v)$

Algorithms for Radio Networks Christian Schindelhauer







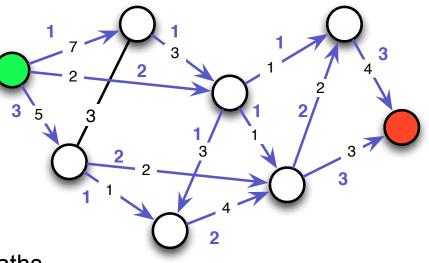


Computation of the Maximum Flow

- Every natural pipe system solves the minimummaximum flow problem
- Algorithms
 - Linear Programming
 - for real numbers
 - the flow is described by equations of a linear optimization problem
 - Simplex algorithm (or Ellipsoid method) can solve any linear equation

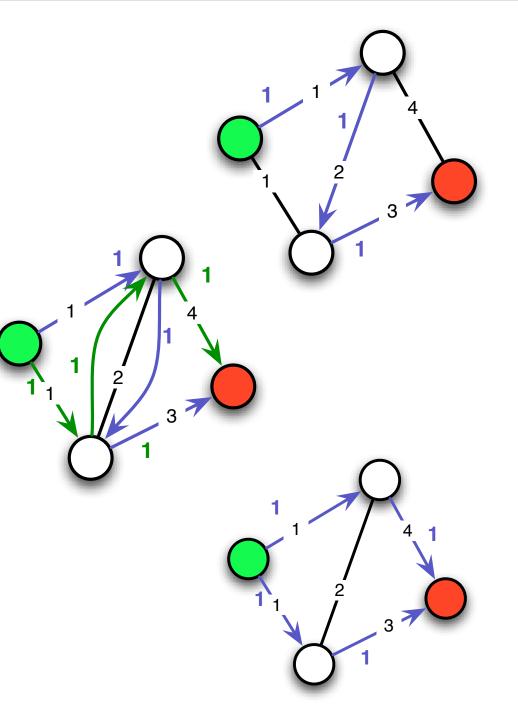
system

- Ford-Fulkerson
 - also for integers
 - as long as open paths exist, increase the flow on theses paths
 - * open path: path which increases the flow
- Edmonds-Karp
 - special case of Ford-Fulkerson
 - use BFS (breadth first search) to find open paths



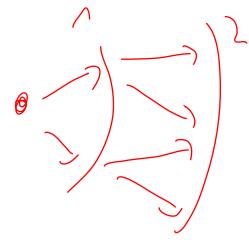
Ford-Fulkerson

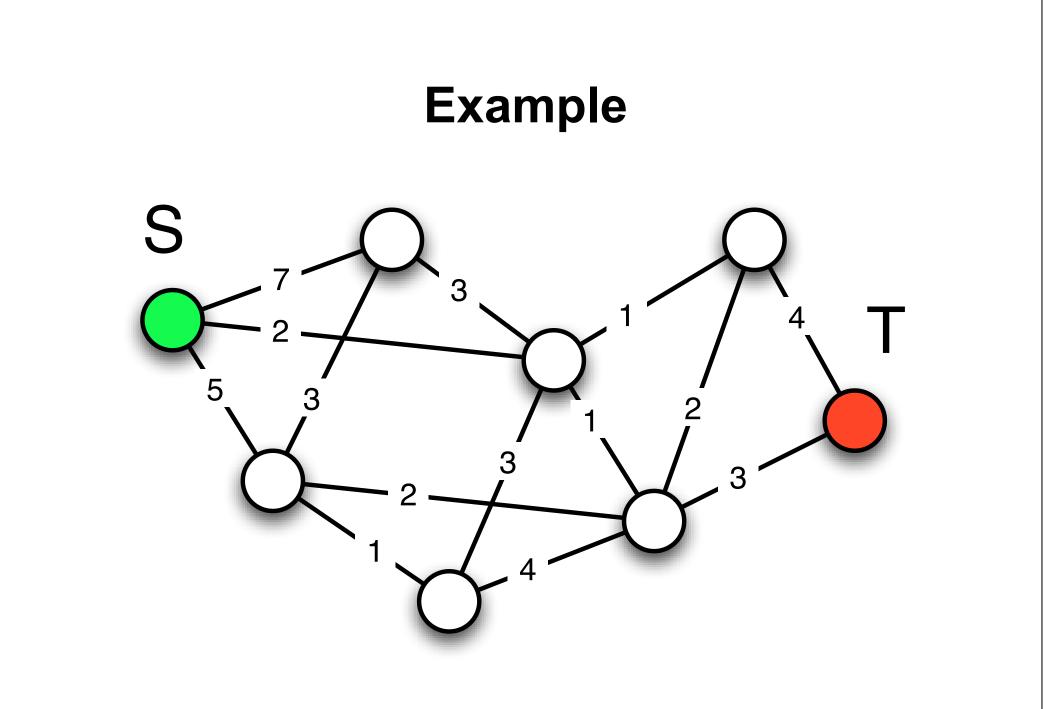
- Find a path from the source node to the target node
 - where the capacity is not fully utilized
 - or which reduces the existing flow
- Compute the maximum flow on this augmenting path
 - by the minimum of the flow that can be added on all paths
- Add the flow on the path to the existing flow
- Repeat this step until no flow can be added anymore

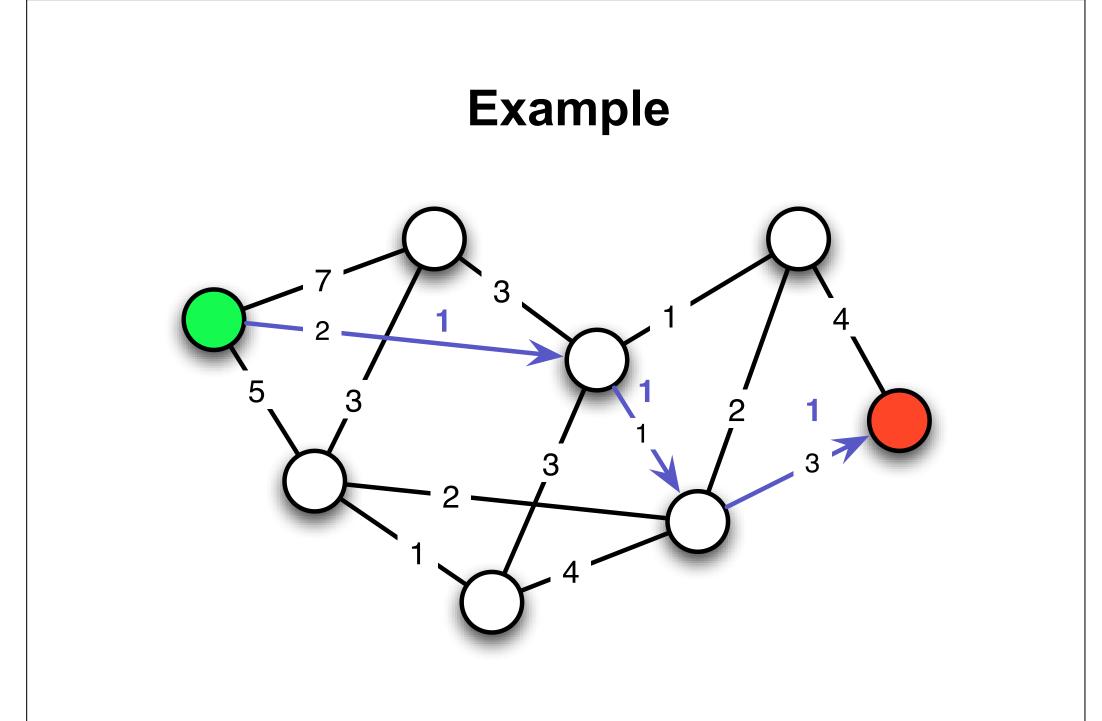


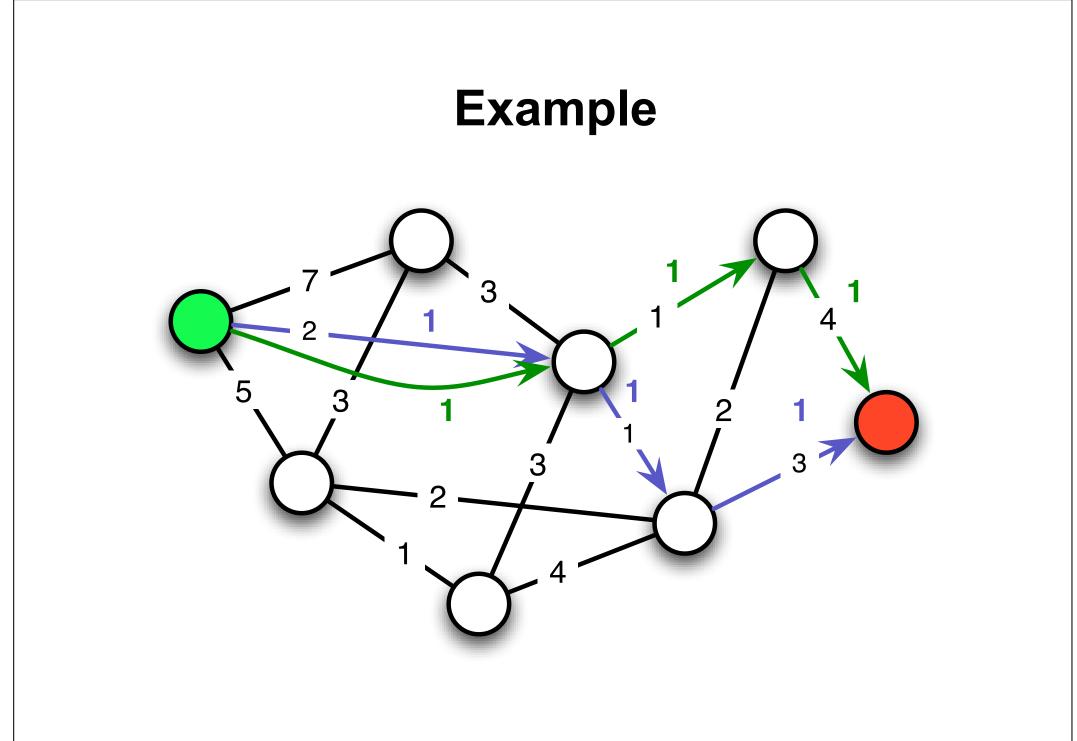
Edmunds-Karp

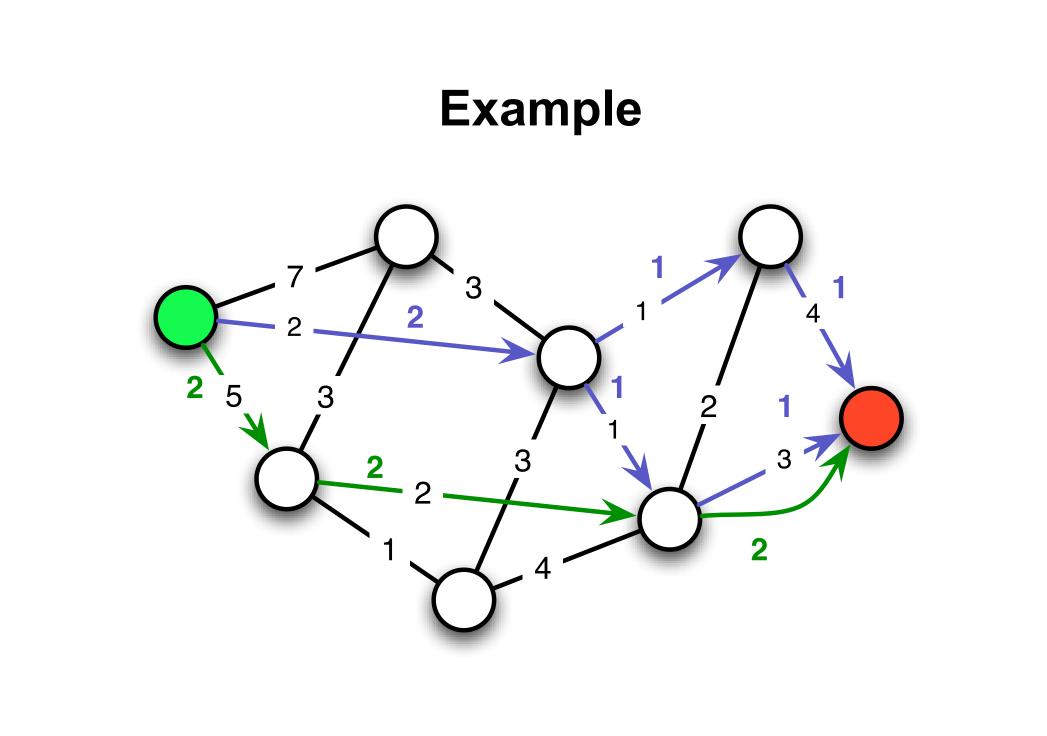
- Search path for Ford-Fulkerson algorithm
- Choose the shortest augmenting path
 - Computation by breadth-first-search
- Ieads to run-time O(|V| |E|²)
 - whereas Ford-Fulkerson could have exponential runtime

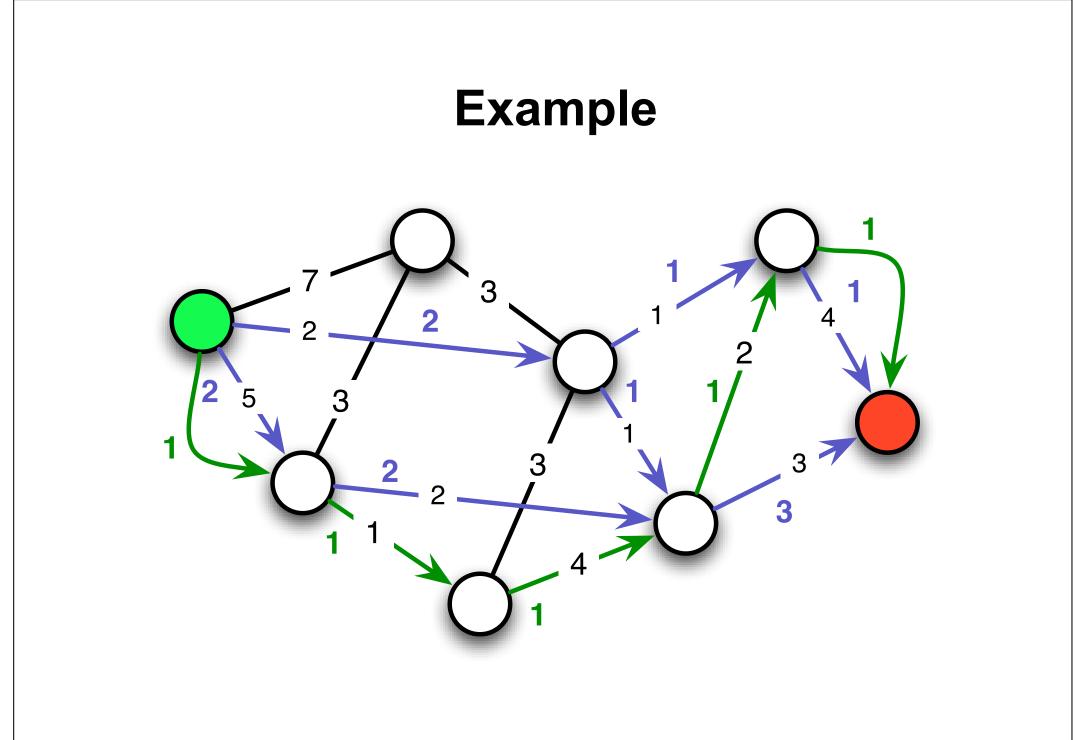


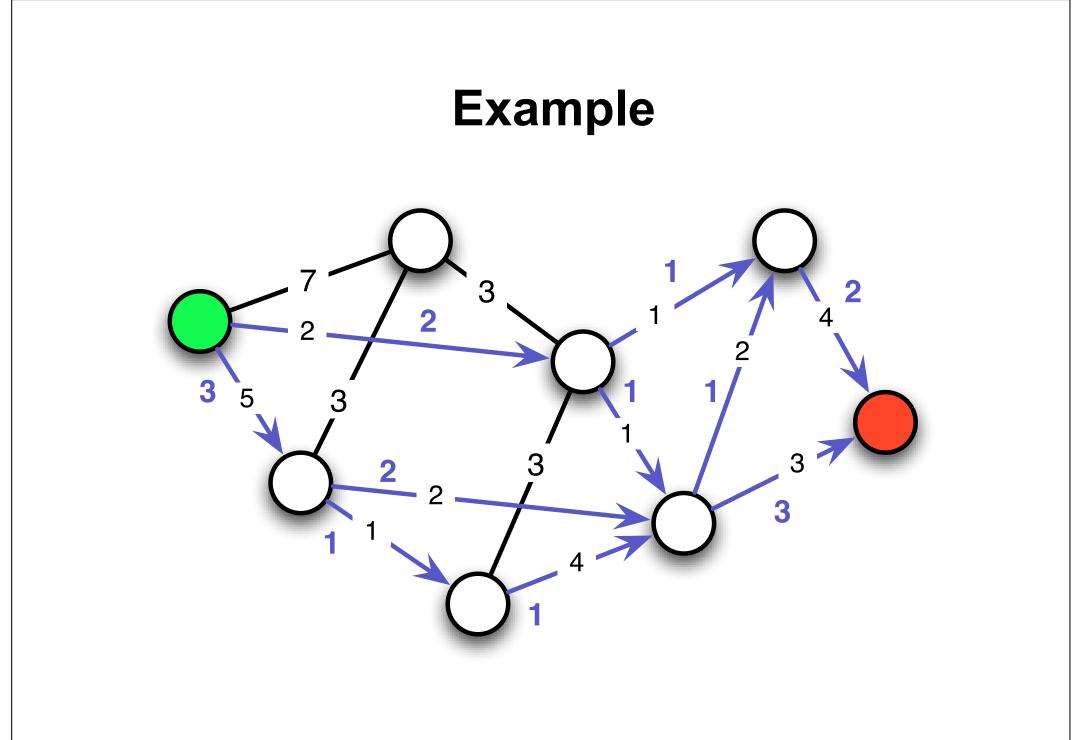


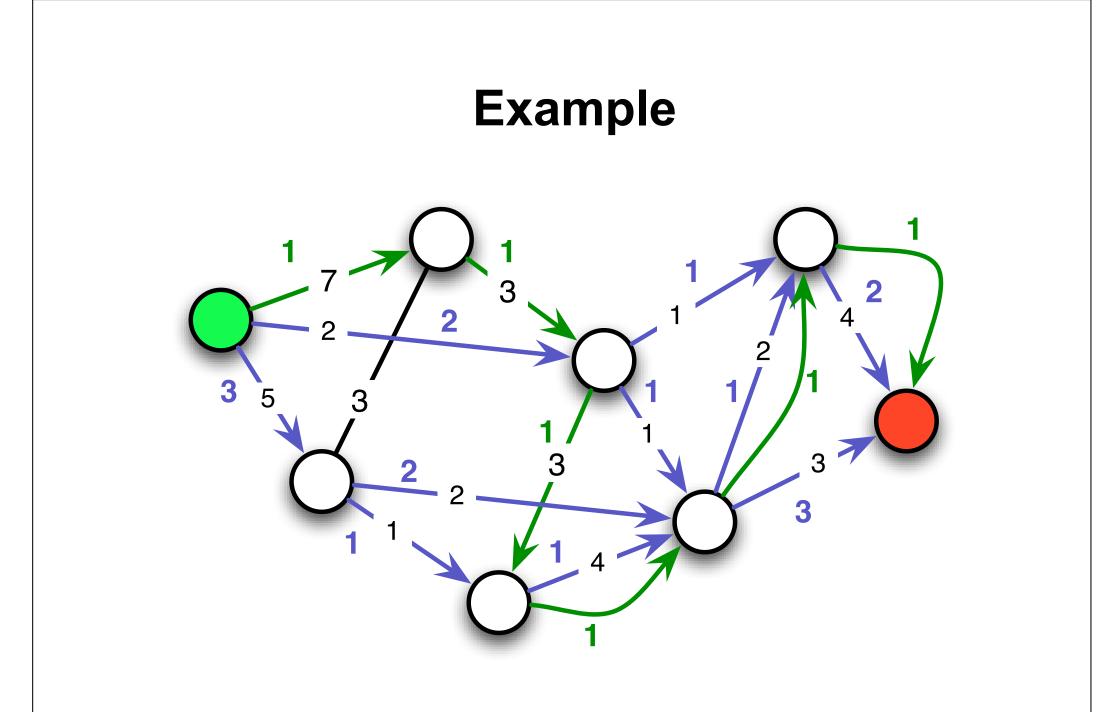










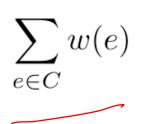




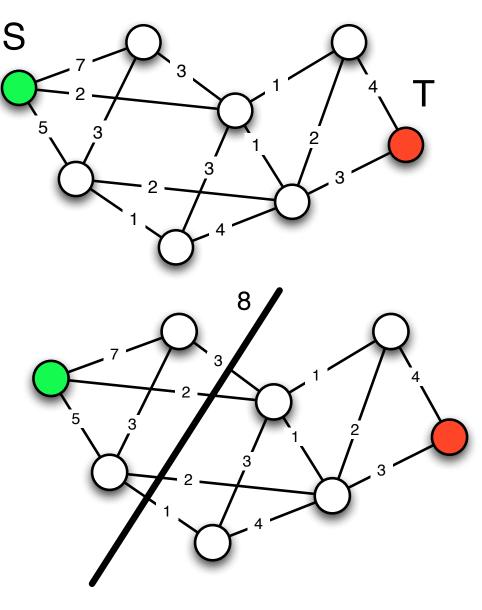
Minimum Cut in Networks

Motivation

- Find bottleneck in networks
- Definition
 - Min Cut problem
 - Given
 - graph G=(V,E)
 - capacity function w: $E \rightarrow R+0$,
 - sources S and targets T
 - Find minimum cut between S and T
- A cut C is a set of edges
 - such that every path from a node of S to a node of T, contains an edge of C
- The size of a cut is



Algorithms for Radio Networks Prof. Christian Schindelhauer



Computer Networks and Telematics University of Freiburg

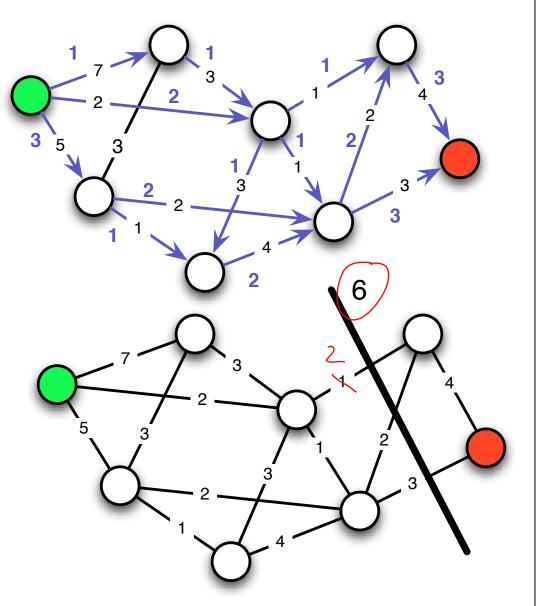
Min-Cut-Max-Flow Theorem

Theorem

• The minimum cut equals the maximum flow

Algorithms for minimum cut

 can be obtained from the maximum flow algorithms



Multi-Commodity Flow Problem

Motivation

 theoretical model for point to point communication

Definition

- Multi-commodity flow problem
- given
 - a graph G=(V,E)
 - a capacity function w: $E \rightarrow R+0$,
 - commodities K₁, .., K_k:
 - * $K_i = (s_i, t_i, d_i)$ with
 - * si: source node
 - * t_i: target node
 - * d_i: demand

- Find flows f₁, f₂,..., f_k for all commodities such that
 - capacities
 - flow property

$$\sum_{i=1}^{n} f_i(u,v) \le w(u,v)$$

 $\forall v \notin \{s_i, t_i\} : \sum f_i(u)$ de

$$f_i(v, u) = \sum_{u \in V} f_i(v, u)$$

 $= d_i$

emand

$$\sum_{v \in V} f_i(s_i, v) = \sum_{u \in V} f_i(u, t_i)$$

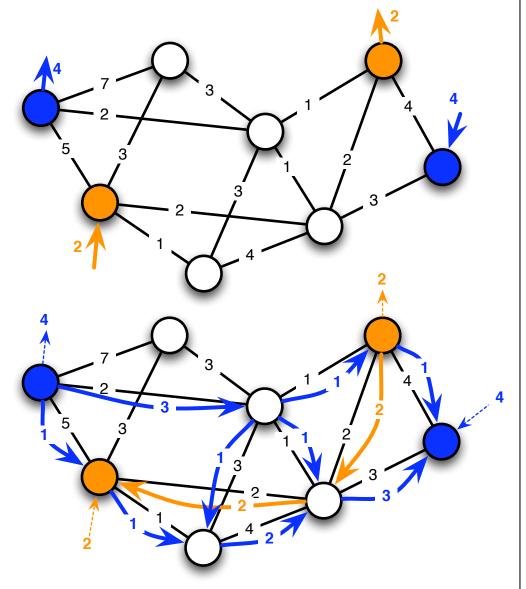
 $u \in V$

Computer Networks and Telematics University of Freiburg

Algorithms for Radio Networks Prof. Christian Schindelhauer

Solving the Multi-Commodity Flow Problem

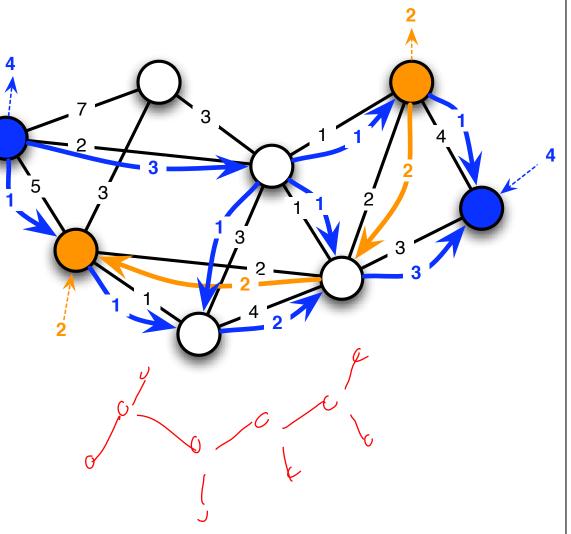
- Multi-Commodity Flow Problem
- Optimize
 - sum of all flows or
 - maximize the worst ratio between commodity and the demand
- Problem can be solved in polynomial time
 - for real numbers
 - using linear programming



Complexity of the Multi Commodity Flow Problem

Problem is NP-complete

- for integers
 - e.g. packets
- even for two commodities
 - Shai, Itai, Even, 1976
- Polynomial solution
 - with respect to the number of paths between sources and targets
- Approximation
 - good central and distributed approximation algorithms exist (polylogarithmic approximation factor)
- Weaker forms of the Min-Cut-Max-Flow-Theorems exist



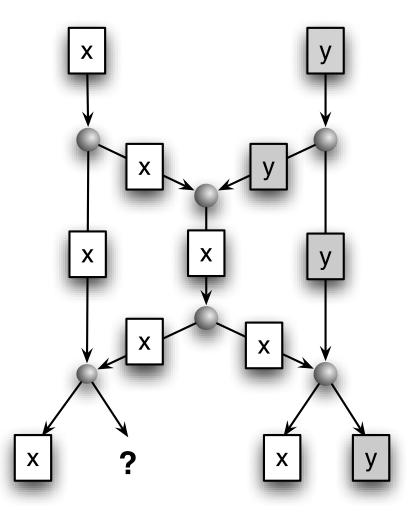
Network Coding

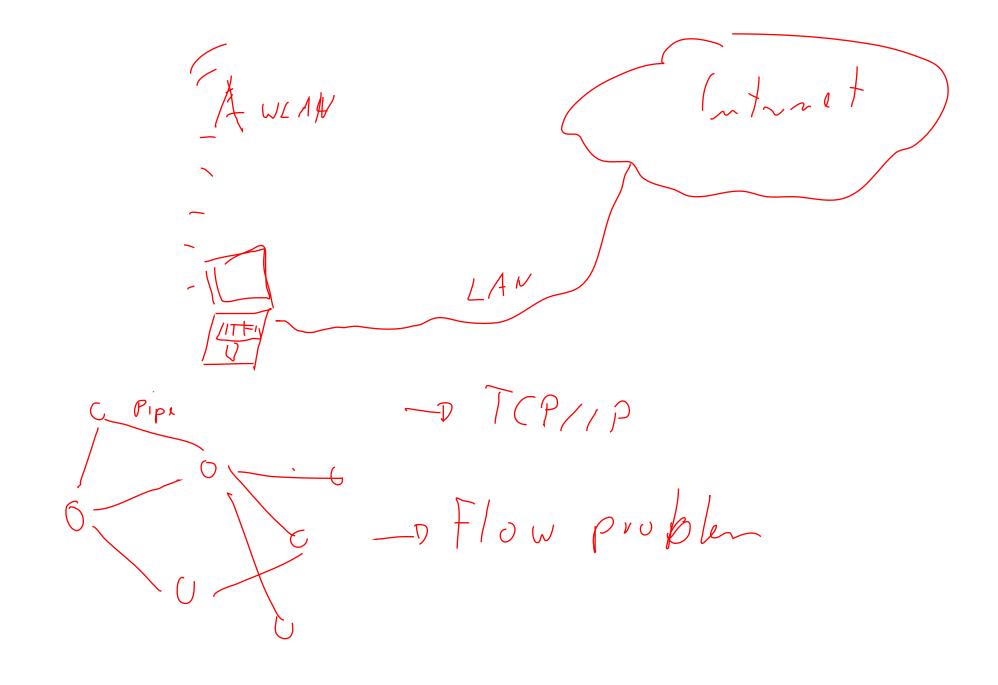
R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung

 Network Information Flow, (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000)

Example

- Bits x and y are to be transfered
- Each edge carries only a bit
- If bits are transfered as is
 - then both x and y cannot be received either on the left or right side





$$3x + 5y = 1$$

$$x \le 10 \qquad x \ge 0$$

$$y \le 15 \qquad y \ge 0$$

and max
$$2x - y$$

 $\int 3x + \overline{S}y = 1$ X

