Algorithms for Radio Networks

Localization

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Prof. Christian Schindelhauer
Coarse Localization Techniques

- **Hop-distance**
 - in dense ad hoc networks or wireless sensor networks
 - approximate position by the number of hops to anchor points

- **Overlapping connections**
 - position at the intersection of the received transmission circuits

- **Localization point in the triangle**
 - determination of triangles of anchor points
 - in which the node lies
 - overlap provides approximate position

- "Fingerprinting" of signal strength measures
Localization methods

- **Dead Reckoning**: Relative localization depending on course and traveled distance
- **Triangulation**: Calculate the intersection of angular bearings
- **Trilateration**: Calculate the intersection of three range measurements (circles)
- **Multilateration with absolute ranges**: Calculate the intersection of at least four range measurements
 - In the plane: circles, in space: spheres
 - May be over-determined equation system
- **Multilateration with relative ranges**: Hyperbolic multilateration
 - Multilateration with unknown send time
 - Calculate intersection of hyperbolas / hyperboloids
Dead Reckoning

- Relative vector navigation, vectors of orientation ϕ_i and distance d_i
- Animals: “path integration” by special regions in hippocampus of desert ants (Wehner, 2003)
- Dead reckoning scheme:

Recursive:

$$x_i = x_{i-1} + d_i \cdot \cos \phi_i$$
$$y_i = y_{i-1} + d_i \cdot \sin \phi_i$$

Direct:

$$x_i = x_0 + \sum_{i=1}^{n} d_i \cdot \cos \phi_i$$
$$y_i = y_0 + \sum_{i=1}^{n} d_i \cdot \sin \phi_i$$
Dead Reckoning

- Example: Navigation of ships / airplanes
 - if course is known (compass)
 - if traveled distance is known (ship log, pitot tube)
- Prone to drift (water current, wind, wheel slip)
- Errors add up over time
Inertial Navigation

› Consider orientation and traveled distance as direction vector s_t at time t.
› What if only acceleration a_t is measured?
 • Inertial navigation, double integration
 \[\ddot{s}(t) = \int \int a(t) \, dt^2 + s_0 + \dot{v}_0 \cdot t \]
 • Often also rotation is measured (angular velocity)
› Combine accelerometer, gyroscope, and compass:
 • Inertial Measurement Unit (IMU)

[F. Höflinger, 2013]
Inertial Navigation

- Foot-mounted MEMS-IMU
 - Errors add up over time
- Compensation: Zero velocity update
 - Detect footstep
 - Translation velocity is zero at this moment!

[Zhang, 2013]
Triangulation

› Given a side of known length and two adjacent angles
› In the plane:
 • Calculate the intersection point of the other sides
 • Duality with trilateration: Triangle congruency
 (angle-side-angle) \leftrightarrow (side-side-side)
› On earth surface:
 • More complicated (spherical trigonometry)
Trilateration

\(\frac{h}{a} = \cos \beta_2 \)

\[\frac{h}{x} = \cos \beta_1 \]
Triangulation

- Example: Navigation of ships / airplanes (cross bearing triangulation)
 - 1) Bearings of two objects on a map
 - 2) Time-shifted bearings of the same object
Triangulation

- Given a side of known length and the opposite angle
 - Triangle congruency: Does not define a triangle!
 - What else is possible?
- Given a lighthouse of known height h
 - Measurement of angle ϕ, use a sextant
 - Calculation of distance $d = \frac{h}{\tan(\phi)}$
 - Measurement of lighthouse bearing
 - position in polar coordinates
- Height of lighthouse not known
 - Sail towards lighthouse

\[d = \frac{h}{\tan \alpha} \]
\[d = \frac{h}{\tan \alpha_2} \]
Triangulation

› Given a side of known length and the opposite angle
 • Measure angle ϕ of two landmarks (by theodolite or by laser scanner)
 • If $\phi = 90^\circ$: Ship’s position resides on Thales’ circle
 • Other angles: generalization of Thales’ circle
 • Circle of equal angles (“Fasskreisbogen”)

![Diagram of triangulation process]
Triangulation

- Given a side of known length and the opposite angle
 - Calculate position by a third landmark
Triangulation

- Height of Mt. Everest
 - 8,840 m above NN (Sickdhar, 1856)
 - 8,848 m (Survey of India, 1955)
 - 8,850 m (GPS, 1999)
 - 8,849 m (Radar reflectors, 2004)
 - ...

[A. Waugh, Mt. Everst & Deodanga, 1862.]
Algorithms for Radio Networks

Localization

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Prof. Christian Schindelhauer