

Algorithms for Radio Networks

Localization

University of FreiburgTechnical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

Trilateration

- Assuming the distance to three points is given
- System of equations
 - (x_i, y_i): coordinates of an anchor point i,
 - r distance from the anchor point i
 - (x_u, y_u): unknown coordinates of a node

$$(x_i - x_u)^2 + (y_i - y_u)^2 = r_i^2$$
 for $i = 1, ..., 3$

- Problem: Quadratic equations
 - Transformations lead to a linear system of equations

Trilateration

System of equations

$$(x_i - x_u)^2 + (y_i - y_u)^2 = r_i^2$$
 for $i = 1, ..., 3$

Transformation

$$(x_1 - x_u)^2 - (x_3 - x_u)^2 + (y_1 - y_u)^2 - (y_3 - y_u)^2 = r_1^2 - r_3^2$$

$$(x_2 - x_u)^2 - (x_2 - x_u)^2 + (y_2 - y_u)^2 - (y_2 - y_u)^2 = r_2^2 - r_3^2.$$

results in:

$$2(x_3 - x_1)x_u + 2(y_3 - y_1)y_u = (r_1^2 - r_3^2) - (x_1^2 - x_3^2) - (y_1^2 - y_3^2)$$

$$2(x_3 - x_2)x_u + 2(y_3 - y_2)y_u = (r_2^2 - r_2^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2)$$

Algorithms for Radio Networks Prof. Christian Schindelhauer

Trilateration as a Linear System of Equations

Forming a system of equations

$$2\begin{bmatrix} x_3 - x_1 & y_3 - y_1 \\ x_3 - x_2 & y_3 - y_2 \end{bmatrix} \begin{bmatrix} x_u \\ y_u \end{bmatrix} = \begin{bmatrix} (r_1^2 - r_3^2) - (x_1^2 - x_3^2) - (y_1^2 - y_3^2) \\ (r_2^2 - r_2^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2) \end{bmatrix}$$

• Example:

• $(x_1, y_1) = (2,1), (x_2, y_2) = (5,4), (x_3, y_3) = (8,2),$

•
$$\mathbf{r}_1 = \mathbf{10}^{1/2}$$
, $\mathbf{r}_2 = \mathbf{2}$, $\mathbf{r}_3 = \mathbf{3}$

$$2 \begin{bmatrix} 6 & 1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} x_u \\ y_u \end{bmatrix} = \begin{bmatrix} 64 \\ 22 \end{bmatrix}^{<}$$

$$\rightarrow (\mathbf{x}_u, \mathbf{y}_u) = (\mathbf{5}, \mathbf{2})$$

Trilateration as a Linear System of Equations

- In three dimensions
 - Intersection of four spheres

$$\underbrace{\begin{bmatrix} (d_1^2 - d_4^2) - (x_1^2 - x_4^2) - (y_1^2 - y_4^2) - (z_1^2 - z_4^2) \\ (d_2^2 - d_4^2) - (x_2^2 - x_4^2) - (y_2^2 - y_4^2) - (z_2^2 - z_4^2) \\ (d_3^2 - d_4^2) - (x_3^2 - x_4^2) - (y_3^2 - y_4^2) - (z_3^2 - z_4^2) \end{bmatrix}}_{\vec{b}} = 2 \underbrace{\begin{bmatrix} (x_4 - x_1)(y_4 - y_1)(z_4 - z_1) \\ (x_4 - x_2)(y_4 - y_2)(z_4 - z_2) \\ (x_4 - x_3)(y_4 - y_3)(z_4 - z_3) \end{bmatrix}}_{\vec{A}} \begin{bmatrix} x_{P1} \\ y_{P1} \\ z_{P1} \end{bmatrix}$$

Solve
$$Ax = b \rightarrow x = A^{-1}b$$

Trilateration

In case of measurement errors

• Averaging: e.g. centroid of triangle

6

Trilateration

- Measurement errors
 - Small distance errors can lead to large position errors

flip ambiguity from noise

Multilateration with *absolute* distances

- Multilateration (absolute distances): Calculate the intersection of at least four distance measurements
 - May be over-determined equation system: More equations than variables
 - "No solution" in case of measurement errors
- Minimize sum of quadratic residuals: Least squares.
- Vector notation
 - Solve $(A^TA)x = A^Tb \Rightarrow x = (A^TA)^{-1} A^Tb$
 - Matrix inverse by Gauss-Jordan elimination

Multilateration with *relative* distances

- Multilateration (relative): Calculate the intersection of *relative* distance measurements
 - Emission time *e* unknown!
 - Measure only reception times T_i , i = 1, ..., n
 - System of equations $T_i = e + ||\mathbf{r}_i \mathbf{s}|| / \mathbf{c}$
 - ...for a signal traveling from s to receivers r_i
- Subtract two absolute times T_i and T_i :
 - $T_i T_j = \| r_i s \| / c \| r_j s \| / c =: \Delta t$ (i, j = 1, ..., n)
 - System of hyperbolic equations
 - Time Difference of Arrival Δt , relative distance $\Delta d = c \Delta t$

Multilateration with *relative* distances

- Advantages
 - No cooperation of signal emitter
 - Hardware delays cancel out (both emitter and receiver)
 - Passive localization / natural signal sources
- Disadvantages
 - Larger number of unknown values: Position and time
 - Synchronization still (usually) required

- "Anchor-free localization":
 - Hyperbolic multilateration
 - Unknown emitters s_i , and unknown receivers r_i
- Advantages:
 - No need to measure receiver positions
 - Self-positioning by passive information from the surroundings
- Disadvantages:
 - Even larger number of unknown variables

- For absolute distances d_{ik} :
 - Solve $||\mathbf{r}_i \mathbf{s}_k|| = d_{ik}$ (*i*, *j* = 1, ..., *n*; *k* = 1, ..., *m*)
 - Problem of intersecting circles / spheres
 - Bipartite distance graph: $G = (\{\mathbf{r}_i\}, \{\mathbf{s}_k\}, \{d(i, k)\})$
 - Minimum case closed-from solutions known [Kuang, et al., ICASSP 2013]

- For *relative* distances $\Delta d_{ijk} = d_{ik} d_{jk}$:
 - Solve $|| \mathbf{r}_i \mathbf{s}_k || || \mathbf{r}_j \mathbf{s}_k || = \Delta d_{ijk}$
 - Problem of intersecting hyperbolas / hyperboloids
 - Closed-form solutions only for larger problem sets
 [Pollefeys and Nister, ICASSP 2008], [Kuang and Åström, EUSIPCO 2013]
 - Minimum problem set: Iterative/recursive approximations [Wendeberg and Schindelhauer, Algosensors 2012]

Degrees of freedom

 $T_{ik} = e_{ik} + ||\mathbf{r}_i - \mathbf{s}_k|| / \mathbf{c}$ (e_{ik} , \mathbf{r}_i , \mathbf{s}_k unknown)

signal	receivers							
sources	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	3	3	3	3	3	3	3	3
3	5	4	3	2	1	0	-1	-2
4	7	5	3	1	-1	-3	-5	-7
5	9	6	3	0	-3	-6	-9	-12
6	11	7	3	-1	-5	-9	-13	-17
7	13	8	3	-2	-7	-12	-17	-22
8	15	9	3	-3	-9	-15	-21	-27
9	17	10	3	-4	-11	-18	-25	-32
10	19	11	3	-5	-13	-21	-29	-37
11	21	12	3	-6	-15	-24	-33	-42
12	23	13	3	-7	-17	-27	-37	-47
($\overline{}$	_ ^	10 -	⊥ 2.		10 100	2	
C	^J 2D	— Z	<i>rl</i> -	τ 3/	"n —	nm	- 3	

signal					recei	vers		
sources	1	2	3	4	5	6	7	8
1	0	2	4	6	8	10	12	14
2	3	4	5	6	7	8	9	10
3	6	6	6	6	6	6	6	6
4	9	8	7	6	5	4	3	2
5	12	10	8	6	4	2	0	-2
6	15	12	9	6	3	0	-3	-6
7	18	14	10	6	2	-2	-6	-10
8	21	16	11	6	1	-4	-9	-14
(9)	24	18	12	6	0	-6	-12	-18
10	27	20	13	6	-1	-8	-15	-22
11	30	22	14	6	-2	-10	-18	-26
12	33	24	15	6	-3	-12	-21	-30

$$G_{3\mathbf{D}} = 3\mathbf{n} + 4\mathbf{m} - \mathbf{n}\mathbf{m} - 6$$

Minimum cases

	2D	3D	
general setting	4 / 6	5 / 10	
		6/7	
far-field setting	3 / <mark>3</mark> (sync.)	4 / <mark>6</mark> (sync.)	
	3 / <mark>5</mark> (unsync.)	4 / <mark>9</mark> (unsync.)	

Minimum number of required receivers / emitters

- Strategies:
 - (1.) Estimate receiver topology from known information
 - (2.) Assume large number of emitters and receivers
 - (3.) Assume specific distribution of emitters and receivers
 - (4.) Heat the CPU: Optimization, branch-and-bound search, ...

- (1.) Topology: <u>Hull element</u>
- "The receiver which receives the last timestamp is an element of the convex hull"

If exists *i* such that for all *k*: $T_i \ge T_k$, then holds: $(\mathbf{m}_i - \mathbf{s})^T \mathbf{n}_0 = ||\mathbf{m}_i - \mathbf{s}|| \ge ||\mathbf{m}_k - \mathbf{s}|| \ge (\mathbf{m}_i - \mathbf{s})^T \mathbf{n}_0$

Algorithms for Radio Networks Prof. Christian Schindelhauer

- (2.) Large number of signals: Statistical assumptions
 [Schindelhauer, et al., SIROCCO 2011]
 - Lemma: Many signals occur from the long side of any two receivers.

• Estimate the distance: $d \sim c/2 (\Delta t_{max} - \Delta t_{min})$

- (3.) Assume that signals occur from far away:
- "far-field assumption", linear frontier of signal propagation
- The Ellipsoid TDoA Method [Wendeberg, et al., TCS, 2012]

Algorithms for Radio Networks Prof. Christian Schindelhauer Computer Networks and Telematics University of Freiburg

Algorithms for Radio Networks

Localization

University of FreiburgTechnical Faculty Computer Networks and Telematics Prof. Christian Schindelhauer

general position - no 3 points on a lin C 9 P - mo 4 point on a Circle/ б 0 \mathbf{S} #2 $\frac{0}{>0} = 0$ 2

 $\left(v - v' \right)$ $\rightarrow (r - r')^2 \qquad \downarrow$ $\int \frac{d(x-r')^2}{dx} = 2x - 2t'$

 $\begin{pmatrix} 21 \\ m \\ m \\ n \end{pmatrix} \begin{pmatrix} 1 \\ m \\ n \end{pmatrix} \begin{pmatrix} 1 \\ m \\ m \end{pmatrix} \begin{pmatrix} 1 \\ m \\ m \\ m \end{pmatrix} = \begin{pmatrix} 1 \\ m \\ m \\ m \end{pmatrix}$

 $v_i = didhac = \left(\begin{array}{c} 1 \\ 2 \end{array} - \begin{array}{c} 1 \\ 1 \end{array} \right) \cdot C$ 12 6 $C = 3.10^{\text{P}} \frac{m}{\text{S}} =$ <u>л</u> 6 a C(v

 ${\it O}$

