

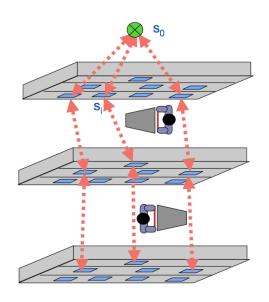
Algorithms for Radio Networks

Introduction and Basics

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Christian Schindelhauer

Networks Types

Cellular networks


- one or more access stations
- each access station covers a cell
- e.g. mobile telephones, WLAN

Mobile ad hoc networks

- self-configuring network of mobile nodes
- nodes serve as end-points or routers
- without any dedicated infrastructure

Wireless sensor network

- connecting sensors and actuator units wireless communicating with one or more base stations
- base station is more powerful than other nodes

Popular Wireless Networks

GSM, GPRS, EDGE

- Global System for Mobile Communications
- General Packet Radio Service
- Enhanced Data Rates for GSM Evolution
- Smart phones, PDAs, Laptop/netbook modem, Tablet PCs

▶ UMTS

- Universal Mobile Telecommunications Systems
- 3rd generation mobile communication standard

▶ LTE

- Long Term Evolution
- 4th generation standard

▶ IEEE 802.11 a/b/g/n/ac

- Wireless Local Area Network (WLAN)
- Wireless networking of computers, cameras, printers, etc.
- Mostly as cellular networks
- But also allows ad-hoc mode between two nodes

▶ IEEE 802.15.4 + Zigbee

- Wireless Personal Area Network (WPAN)
 - Standard for wireless sensor networks
 - Zigbee Alliance
 - * defined higher protocol layers

ISO/OSI Reference model

→ 7. Application

 Data transmission, e-mail, terminal, remote login

▶ 6. Presentation

 System-dependent presentation of the data (EBCDIC / ASCII)

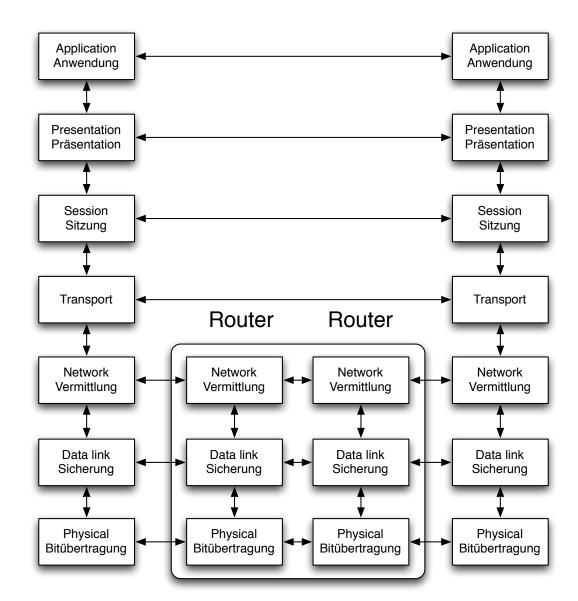
> 5. Session

start, end, restart

▶ 4. Transport

Segmentation, congestion

> 3. Network


Routing

▶ 2. Data Link

Checksums, flow control

▶ 1. Physical

Mechanics, electrics

TCP/IP-Layer of the Internet

Application	Telnet, FTP, HTTP, SMTP (E-Mail),
Transport	TCP (Transmission Control Protocol) UDP (User Datagram Protocol)
Network	IP (Internet Protocol) + ICMP (Internet Control Message Protocol) + IGMP (Internet Group Management Protoccol)
Host-to- Network	LAN (e.g. Ethernet, 802.11n etc.)

Signals, Data and Information

Information

- Human interpretation,
- e.g. Beautiful weather

Data

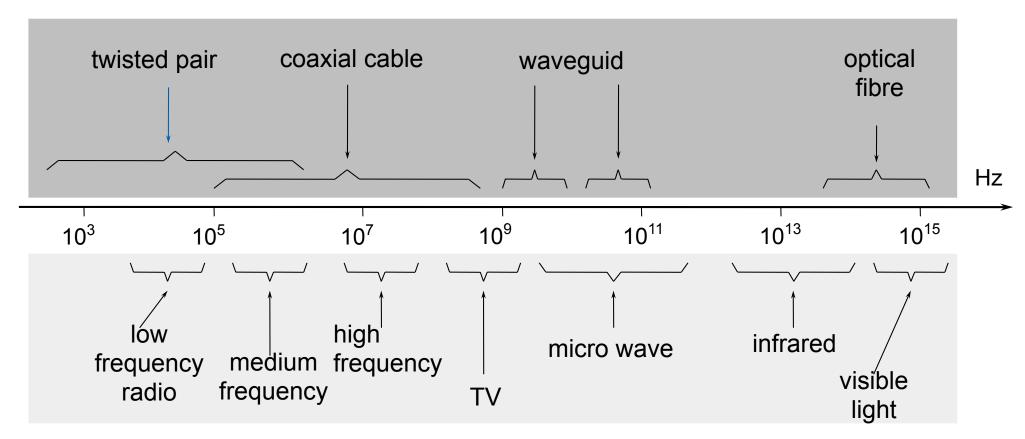
- Formal presentation
- e.g. 28 degrees Celsius, rainfall 0cm, 0% cloud cover

Signal

- Representation of data by physical variables,
- e.g. Current flow through thermal sensor, the video signals from camera

Examples of signals:

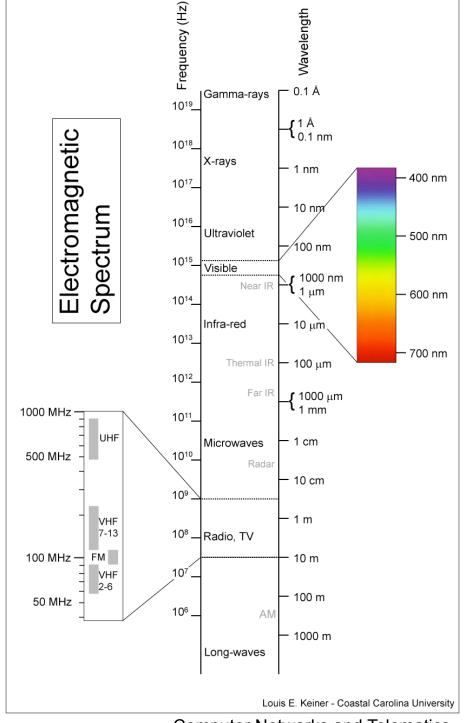
- Current, voltage
- In the digital world signals representing bits


Physics - Background

- Moving particles with electric charge cause electromagnetic waves
 - frequency f: number of oscillations per second
 - unit: Hertz
 - wavelength λ: distance (in meters) between two wave maxima
 - antennas can create and receive electromagnetic waves
 - the transmission speed of electromagnetic waves in vacuum is constant
 - speed of light $c \approx 3 \cdot 10^8$ m/s
- Relation between wavelength, frequency and speed of light:

$$\lambda \cdot f = c$$

Electromagnetic Spectrum


guided media

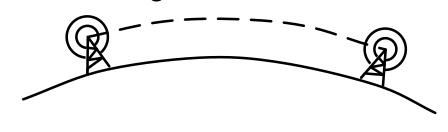
guided media

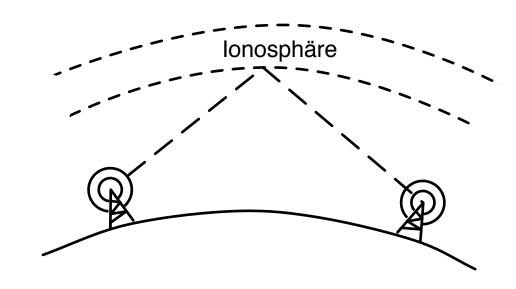
Bands

- ▶ LF Low Frequency
- ▶ MF Medium Frequency
- ▶ HF High Frequency
- VHF Very High Frequency
- ▶ UHF Ultra High Frequency
- ▶ UV Ultra Violet light

Bands for Wireless Networks

- VHF/UHF for mobile radio
 - antenna length
- SHF for point-to-point radio systems, satellite communication
- Wireless LAN: UHF to SHF
 - planned EHF
- Visible light
 - communication by laser
- Infrared
 - remote controls
 - LAN in closed rooms


Propagation Performance


- Straight-lined propagation in vacuum
- Received power decreases with 1/d²
 - in theory
 - in practice higher exponents up to 4 or 5
- Reduction because of
 - attenuation in air (in particular HF, VHF)
 - shadowing and mountain effect
 - reflection
 - diffusion at small obstacles
 - diffraction

Frequency Dependent Behavior

- ▶ VLF, LF, MF
 - follow the curvature of the earth (up to 1000 km for VLF)
 - permeate buildings
- ▶ HF, VHF
 - absorbed by the ground
 - reflected by the ionosphere 100-500 km height
- Over 100 MHz
 - straight-line propagation
 - marginal penetration of buildings
 - good focus
- Over 8 GHz absorption by rainfall

Problems

Multiple Path Fading

- Signal arrives at receiver on multiple paths because of reflection, diffusion, and diffraction
- Signal time variation leads to interferences
 - decoding faults
 - attenuation

Mobility problems

- Fast fading
 - different transmission paths
 - different phasing
- Slow fading
 - increase of distance between sender and receiver

Noise and Interference

Noise

- inaccuracies and heat development in electrical components
- modeled by normal distribution

Interference from other transmitters

- in the same spectrum
- or in neighbored spectrum
 - e.g. because of bad filters

Effect

Signal is disrupted

Signal Interference Noise Ratio

- reception energy = transmission energy · path loss
 - path loss ~ 1/d^γ
 - γ ∈ [2,5]
- Signal to Interference and Noise Ratio = SINR
 - S = (desired) Signal energy
 - I = energy of Interfering signals
 - N = Noise
- Necessary condition for reception

$$SINR = \frac{S}{I+N} \ge Threshold$$

Path Loss

Attenuatation

 Received signal power depends on the distance d between sender and receiver

▶ Friis transmission equation

- distance: R
- wavelength: λ
- P_r: energy at receiver antenna
- P_t: energy at sender antenna
- G_t: sender antenna gain
- G_r: receiver antenna gain

$$\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2$$

$$P_r(d) = P_r(d_0) \cdot \left(\frac{d_0}{d}\right)^2$$

Path Loss Exponent

Measurements

- γ path loss exponent
- shadowing variance σ^2
- reference path loss at 1m distance

Location	Average of γ	Average of $\sigma^2[dB]$	Range of PL(1m)[dB]
Engineering Building	1.9	5.7	[-50.5, -39.0]
Apartment Hallway	2.0	8.0	[-38.2, -35.0]
Parking Structure	3.0	7.9	[-36.0, -32.7]
One-sided Corridor	1.9	8.0	[-44.2, -33.5]
One-sided patio	3.2	3.7	[-39.0, -34.2]
Concrete canyon	2.7	10.2	[-48.7, -44.0]
Plant fence	4.9	9.4	[-38.2, -34.5]
Small boulders	3.5	12.8	[-41.5, -37.2]
Sandy flat beach	4.2	4.0	[-40.8, -37.5]
Dense bamboo	5.0	11.6	[-38.2, -35.2]
Dry tall underbrush	3.6	8.4	[-36.4, -33.2]

Karl, Willig, Protocols and Architectures for Wireless Sensor Networks, Wiley, 2005

Algorithms for Radio Networks

Introduction and Basics

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Christian Schindelhauer

