

Algorithms for Radio Networks

Fourier-Analysis and Modulation

University of Freiburg Institute of Computer Science Computer Networks and Telematics Christian Schindelhauer

IN STITUT FÜR IN FORMATIK FREIBURG

How does it really work?

- Charged particles apply forces to other charge particles
 - electrons (-) repel other electrons (-)
 - protons (+) attract electrons (-)
- The possibility to apply a force to a particle is called field
 - here electric field
- The electric field of a particle depends on
 - the charge q (+/-, strenght)
 - the distance from the particle r'
 - respecting the speed of light
 - the direction towards the particle e_{r^\prime}
 - the speed and the acceleration

$$\mathbf{E} = \frac{-q}{4\pi\varepsilon_0} \left(\frac{e_{r'}}{r'^2} + \frac{r'}{c} \frac{d}{dt} \left(\frac{\mathbf{e_{r'}}}{r'^2} \right) + \frac{1}{c^2} \frac{d^2}{dt^2} \mathbf{e_{r'}} \right)$$

Radio Communication in the Far Distance

Superposition Principle:

- Electric Fields add up, since they represent forces
- The dominant term in the distance is the acceleration term
- In radio communication electrons are moved by sinus curves
 - so we can (sloppily) replace:

$$e_{r'} \approx \frac{1}{r'} a \sin 2\pi f t$$

• with amplitude a and frequency f

The Energy P of an electric field

 is proportional to the square of the field E

$$\mathbf{E} = \frac{-q}{4\pi\varepsilon_0} \left(\frac{e_{r'}}{r'^2} + \frac{r'}{c} \frac{d}{dt} \left(\frac{\mathbf{e_{r'}}}{r'^2} \right) + \frac{1}{c^2} \frac{d^2}{dt^2} \mathbf{e_{r'}} \right)$$

Amplitude Representation

Amplitude representation of a sine curve

$$s(t) = A\sin(2\pi ft + \phi)$$

- A: amplitude
- φ: phase shift

Fourier Transformation

- Fourier transformation of a periodic function
 - decomposition in various sine and cosine functions
- Dirichlet condition of a periodic function f
 - $f(x) = f(x+2\pi)$
 - f(x) in (-π,π) in finitely many intervals continuous and monotonic
 - If f is discontinuous at x_0 , then f(x_0)=(f(x_0-0)+f(x_0+0))/2

• Theorem of Dirichlet:

 If f(x) satisfies (-π,π) the Dirichlet condition then there exists Fourier coefficients a₀,a₁,a₂,...,b₁,b₂,... such that

Computation of Fourier Coefficients

Fourier coefficients a_i, b_i:

• For k = 0,1,2,...

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx$$

• For k = 1,2,3,...
 $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx$

• Example: saw tooth curve

$$\begin{split} f(x) &= x \text{ , für } 0 < x < 2\pi \\ f(x) &= \pi - 2 \left(\frac{\sin x}{1} + \frac{\sin 2x}{2} + \frac{\sin 3x}{3} + \cdots \right) \end{split}$$

Algorithms for Radio Networks Christian Schindelhauer

Computer Networks and Telematics University of Freiburg

Fourier Analysis for General Period

- Theorem of Fourier for period T=1/f:
 - The coefficients c, a_n , b_n are then obtained as follows $g(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(2\pi k f t) + b_k \sin(2\pi k f t)$ $a_k = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$ $b_k = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$
- The sum of squares of the k-th terms is proportional to the energy consumed in this frequency:

 $(a_k)^2 + (b_k)^2$

•

How often do you measure?

- How many measurements are necessary to determine a Fourier transform to the kth component, exactly?
- Nyquist-Shannon sampling theorem
 - To reconstruct a continuous bandlimited signal with a maximum frequency f_{max} you need at least a sampling frequency f max of 2 f_{max}.

Symbols and Bits

- For data transmission instead of bits can also be used symbols
 - E.g. 4 Symbols: A, B, C, D with
 - A = 00, B = 01, C = 10, D = 11

Symbols

- Measured in baud
- Number of symbols per second
- Data rate
 - Measured in bits per second (bit / s)
 - Number of bits per second
- Example
 - 2400 bit/s modem is 600 baud (uses 16 symbols)

Structure of a Baseband Digital Transmission

Source Coding

- removing redundant or irrelevant information
- e.g. with lossy compression (MP3, MPEG 4)
- or with lossless compression (Huffman code)

Channel Coding

- Mapping of source bits to channel symbols
- Possibly adding redundancy adapted to the channel characteristics
- physical transmission
- Conversion into physical events

Christian Schindelhauer

University of Freiburg

Structure of a *Broadband* Digital transmission

MOdulation/DEModulation

- Translation of the channel symbols by
 - amplitude modulation
 - phase modulation
 - frequency modulation
 - or a combination thereof

Algorithms for Radio Networks Christian Schindelhauer

Broadband

Idea

- Focusing on the ideal frequency of the medium
- Using a sine wave as the carrier wave signals

A sine wave has no information

- the sine curve continuously (modulated) changes for data transmission,
- implies spectral widening (more frequencies in the Fourier analysis)

The following parameters can be changed:

- Amplitude A
- Frequency f=1/T • Phase φ $s(t) = A \sin(2\pi f t + \phi)$ $\varphi/2\pi f$ -0.5 -1.0 T = 1/fA
 A

Algorithms for Radio Networks Christian Schindelhauer Computer Networks and Telematics University of Freiburg

Amplitude Modulation

The time-varying signal s (t) is encoded as the amplitude of a sine curve:

$$f_A(t) = s(t)\sin(2\pi ft + \phi)$$

- Analoges Signal
 - analog signal
 - amplitude modulation
 - Continuous function in time
 - e.g. second prolonged wave signal (sound waves)

Digital signal

- amplitude keying
- E.g. given by symbols as a symbol of strength
- special case: symbols 0 or 1
 - on / off keying

Amplitude Shift Keying (ASK)

Let E_i(t) is the symbol energy at time t

$$s_i(t) = \sqrt{\frac{2E_i(t)}{T}} \cdot \sin(\omega_0 t + \phi)$$

► Example: E₀(t) = 1, E₁(t) = 2

Frequency Modulation

 The time-varying signal s (t) is encoded in the frequency of the sine curve:

$$f_F(t) = a\sin(2\pi s(t)t + \phi)$$

- Analog signal
 - Frequency modulation (FM)
 - Continuous function in time
- Digital signal
 - Frequency Shift Keying (FSK)
 - E.g. frequencies as given by symbols

Algorithms for Radio Networks Christian Schindelhauer

Frequency Shift Keying (FSK)

Frequency signals ω_i(t)

$$s_i(t) = \sqrt{\frac{2E}{T}} \cdot \sin(\omega_i(t) \cdot t + \phi)$$

• Example:

Algorithms for Radio Networks Christian Schindelhauer Computer Networks and Telematics University of Freiburg

Phase Modulation

The time-varying signal s (t) is encoded in the phase of the sine curve:

$$f_P(t) = a\sin(2\pi ft + s(t))$$

≻Analog signal

- -phase modulation (PM)
- -very unfavorable properties
- -es not used

Digital signal

- -phase-shift keying (PSK)
- -e.g. given by symbols as phases

Computer Networks and Telematics University of Freiburg

Algorithms for Radio Networks Christian Schindelhauer

Digital and Analog signals in Comparison

For a station there are two options

- digital transmission
 - finite set of discrete signals
 - e.g. finite amount of voltage sizes / voltages
- analog transmission
 - Infinite (continuous) set of signals
 - E.g. Current or voltage signal corresponding to the wire

Advantage of digital signals:

- There is the possibility of receiving inaccuracies to repair and reconstruct the original signal
- Any errors that occur in the analog transmission may increase further

Phase Shift Keying (PSK)

 \blacktriangleright For phase signals $\varphi_i(t)$

$$s_i(t) = \sqrt{\frac{2E}{T}} \cdot \sin(\omega_0 t + \phi_i(t))$$

• Example:

Algorithms for Radio Networks Christian Schindelhauer

PSK with Different Symbols

- Phase shifts can be detected by the receiver very well
- Encoding various Symoble very simple
 - Using phase shift e.g. π / 4, 3/4π, 5/4π, 7/4π
 - rarely: phase shift 0 (because of synchronization)
 - For four symbols, the data rate is twice as large as the symbol rate
- This method is called Quadrature Phase Shift Keying (QPSK)

Amplitude and Phase Modulation

- Amplitude and phase modulation can be successfully combined
 - Example: 16-QAM (Quadrature Amplitude Modulation)
 - uses 16 different combinations of phases and amplitudes for each symbol
 - Each symbol encodes four bits $(2^4 = 16)$
 - The data rate is four times as large as the symbol rate

Nyquist's Theorem

Definition

- The band width H is the maximum frequency in the Fourier decomposition
- Assume
 - The maximum frequency of the received signal is f = H in the Fourier transform
 - (Complete absorption [infinite attenuation] all higher frequencies)
 - The number of different symbols used is V
 - No other interference, distortion or attenuation of
- Nyquist theorem
 - The maximum symbol rate is at most 2 H baud.
 - The maximum possible data rate is a bit more than $2 \log_2 H V / s$.

Do more symbols help?

- Nyquist's theorem states that could theoretically be increased data rate with the number of symbols used
- Discussion:
 - Nyquist's theorem provides a theoretical upper bound and no method of transmission
 - In practice there are limitations in the accuracy
 - Nyquist's theorem does not consider the problem of noise

The Theorem of Shannon

- Indeed, the influence of the noise is fundamental
 - Consider the relationship between transmission intensity S to the strength of the noise N
 - The less noise the more signals can be better recognized

Theorem of Shannon

- The maximum possible data rate is H log2 (1 + S / N) bits / s
 - with bandwidth H
 - Signal strength S
- Attention
 - This is a theoretical upper bound
 - Existing codes do not reach this value

Bit Error Rate and SINR

- Higher SIR decreases Bit Error Rate (BER)
 - BER is the rate of faulty received bits
- Depends from the
 - signal strength
 - noise
 - bandwidth
 - encoding
- Relationship of BER and SINR
 - Example: 4 QAM, 16 QAM, 64 QAM, 256 QAM

S/N dB

Algorithms for Radio Networks

University of Freiburg Institute of Computer Science Computer Networks and Telematics Christian Schindelhauer

