

Algorithms for Radio Networks

Orthogonal Frequency Division Multiplexing

University of Freiburg Technical Faculty Computer Networks and Telematics Christian Schindelhauer

Repetition

Multiplexed

- Spatial Multiplexing
- Frequency division multiplexing
- Time division multiplexing
- Code division multiplexing
- Multiple-input multiple-output (next lecture)

Modulation

- Amplitude modulation
- Phase modulation
- Frequency modulation

Principle of OFDM

- OFDM (Orthogonal Frequency Division Multiplex)
 - Signals are divided into parallel signal streams
 - Parallel signals are modulated on carrier waves of different frequencies, phase / amplitude
 - e.g. 16-QAM
 - The carrier signals are combined and transmitted simultaneously
- Special form of frequency-division multiplexing
- The carrier waves using orthogonal frequency:
 - frequencies f, 2f, 3f, 4f, 5f, ...

Repitition: Complex Numbers

- i: imaginary number with
 - i² = -1
- A complex number is a linear combination of a real part a and imaginary b
 - z = a + bi
- Calculation rules:
 - (a+bi)+(c+di) = (a+c) + (b+d) i
 - (a+bi) (c+di) = (ac bd) + (ad + bc) i
 - 1/ (a+b i) = (a-bi)/(a²+b²)
- Complex conjugate
 - (a+bi)* = (a bi)

Exponentiation of Complex Numbers

- Important equation
 - e^{iπ} = -1
 - $e^{i\phi} = \cos \phi + i \sin \phi$
- Exponentiation of a complex number
 - $e^{a+bi} = e^a e^{bi} = e^a (\cos b + i \sin b)$
- Therfore
 - real part $e^{i\phi}$: Re($e^{i\phi}$) = cos ϕ
 - imaginary of $e^{i\phi}$: Im $(e^{i\phi}) = \sin \phi$

Equivalent Representations of the FFT

Real number representation

• Sine and cosine functions of different frequencies

$$g(x) = \sum_{k=0}^{N-1} a_k \cos \frac{2\pi kt}{T} + b_k \sin \frac{2\pi kt}{T}$$

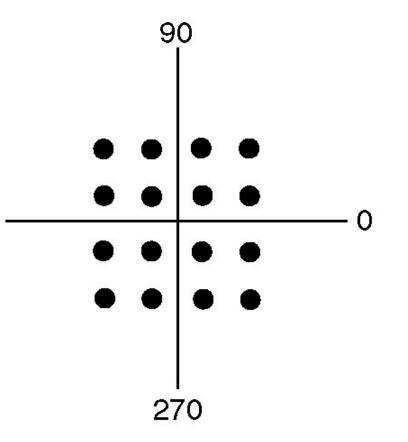
 Computation of the inverse by cosine/sine integral product

$$a_k = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$
$$b_k = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$

Complex representation

 real part of the exponential function of differnent frequencies

$$f(x) = \sum_{k=0}^{N-1} z_k e^{i2\pi kt/T}$$


 Computation of the inverse by the integral over the product with the complex conjugated carrier wave

$$z_k = \frac{1}{T} \int_0^T \left(e^{i2\pi kt/T} \right)^* f(x) dt$$

Advantage of the Complex Representation

 Each of the QAM symbols can be represented directly as a complex number

$$f(x) = \sum_{k=0}^{N-1} z_k e^{i2\pi kt/T}$$

Application OFDM

Wired

- Broadband Internet (ADSL, VDSL)
- Powerline communications networks (power line communication)
- Wireless
 - WLAN: 802.11 a,g,n
 - Terrestrial digital television DVB-T
 - Mobile communication
 - 802.16 WiMAX (Worldwide Interoperability for Microwave Access)
 - WPAN 802.15.3a

Pros and Cons

Pro

- High bandwidth at low SINR
- Simple and efficient method
- proven technology
- Robust to Multiple Path Fading
- Efficient use of frequency bands

Contra

- Susceptible to Doppler effect
- High power consumption
- Synchronization reduces efficiency

Algorithms for Radio Networks

Orthogonal Frequency Division Multiplexing

University of Freiburg Technical Faculty Computer Networks and Telematics Christian Schindelhauer

