

Algorithms for Radio Networks

Wireless Sensor Networks - Introduction

University of Freiburg Technical Faculty Computer Networks and Telematics Christian Schindelhauer

Wireless Sensor Networks (WSN)

- Wireless sensor networks (WSN)
 - Network embedded in an environment
 - measure and interact with the environment
 - Nodes collect, process and use this information
 - Wireless sensor & actuator networks (WSAN)
- WSN Nodes
 - Sensors
 - Actuators
 - Microprocessor
 - Transceiver

Algorithms for Radio Christian Schindelhauer

puter Networks and Telematics University of Freiburg

Example

Smoke detection network

- Sensors:
 - smoke sensors
- Actuators:
 - acoustic warning signal
 - Optical test signal
- Transceiver and microprocessor
- Alarms are activated at all connected smoke detectors

Roles in Wireless Sensor Networks

Data Sources

- data collection and transmission
- equipped with sensors
- Data sinks
 - collects all data
 - part of the WSN and external entity
 - e.g. PDA, gateway, PC, etc.
- Actuator
 - changes the environment
 - e.g. light source, speakers, engine

Architecture of a WSN Unit

- Main components of a WSN unit
 - controller
 - communications unit
 - sensor / actuator
 - memory
 - power

Technologies for WSN

Mass production and price reduction

- for wireless communications
- Micro-controller
- sensors
- batteries
- Miniaturization
 - "Smart dust"
- Energy harvesting
 - power supply from the environment
 - e.g. Light, heat, motion, chemical

Controller

Types

- Microcontroller
 - microprocessor for embedded applications
 - low power consumption
 - inexpensive
- FPGA (Field Programmable Gate Array)
 - too high power consumption
- ASIC (Application Specific Integrated Circuit)
 - special circuit design
 - best but most expensive solution

Sample Configuration

Texas Instruments MSP430

- 16-bit RISC core
- up to 4 MHz
- 2-10 kbytes RAM
- several analog-digital converters
- Atmel ATMega 128L (z.B. Mica-2)
 - 8-bit controller
 - 128 kB Flash program memory
 - 4-8 kB SRAM
 - 4-7,4 Mhz

Energy efficiency

Standard

- Power supply from batteries
- Long run times for
 - Nodes and overall network

Necessary: energy-efficient protocols

- Multi-hop routes with low energy
- Battery capacity as a parameter for algorithms
- Energy and networking poses a conflict of interest

MANET versus WSN

Similarities

- Self-Organization
- Energy efficiency is necessary
- Wireless multi-hop networks
- No centralized control or infrastructure

MANET versus WSN differences

MANETs

- larger bandwidths
- computationally stronger nodes
- interconnect users (for example, to laptops, PDAs)

▶ WSN

- highly application-oriented
- interact with the environment
- sometimes have more nodes
- stronger requirements for energy efficiency and maintenance
- longer life time

- individual WSN nodes dispensable
- ▶ WSN
 - data centric
- MANET
 - ID-centric
- mobility
 - sometimes in WSN much higher than in MANETs
 - e.g. If mobility is measured

WSN Applications

Disaster relief

- sensor nodes are dropped from planes over fires
- Nodes measure temperature
 - online collection of fires
- Biology
 - biodiversity acquisition
 - sensor nodes collect wildlife
 - e.g. rare animals in remote areas
 - detection of migration of animals
 - e.g. Zebras, cows, storks

WSN Applications

Intelligent buildings or bridges

- Reduction of energy wastage
 - by humidity, ventilation, cooling and heating control
- Measurement of space usage, temperature, air currents ...
- Measurement of the building load to earthquakes, earth movements
- Environmental measurements
 - e.g. measurement of the Gulf Stream, other water currents, weather balloons

WSN Application

Industrial control

- building control
 - Theft, access
- leakage control in chemical plants
- plant control

Machine condition monitoring and preventive control

- embedding of sensors and control units, where cables are not available
- such as tire pressure monitoring

WSN Application

Automated agriculture

- fertilizer, pesticide and irrigation control
- sensors monitor the soil chemistry and soil physics
- Medicine and health care
 - postoperative or intensive care
 - long-term monitoring of chronically ill or elderly

WSN Application

Logistics

- goods are equipped with sensors
- Iocalization and Quality Control
- Telematics
 - better traffic control through more accurate traffic monitoring
- Intelligent roads
 - cars as traffic sensors

Algorithms for Radio Networks

Wireless Sensor Networks - Introduction

University of Freiburg Technical Faculty Computer Networks and Telematics Christian Schindelhauer

