

Algorithms for Radio Networks

Wireless Sensor Networks: Sensor Coverage & Lifetime

University of Freiburg Technical Faculty Computer Networks and Telematics Christian Schindelhauer

Literature

- Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless and Peer-to-Peer-Networks (Editor: Jie Wu)
 - Chapter 27: Models and Algorithms for Coverage
 Problems in Wireless Sensor Networks

Sensor Coverage

Algorithms for Radio Networks Christian Schindelhauer Computer Networks and Telematics University of Freiburg

Sensor Coverage

Problem

- Given an area
- Cover the area with the smallest possible number of sensor nodes
- Variants
 - Circle Covering
 - 2-dimensional surface, sensor coverage is given by circles
 - Art Gallery Problem
 - Angled rooms: Sensor coverage and line of sight angle
 - * e.g. camera surveillance
 - Arbitrarily complexer variants conceivable

Naive approach

- Given a square of area A
- How many randomly positioned the sensors with unit disk cover the square?
- Naive calculation
 - Area of the unit circle: $r^2\pi$
 - Number of sensors required: $n = A / (r^2 \pi)$
- Intuition
 - O (A/r²) should be sufficient
- But: intuition is wrong!

Naive approach

- Given a square of area A
- How many randomly positioned sensors with unit disk cover the square?
- Theorem
 - Let $n = A / (r^2 \pi)$
 - where A denotes the area of the square
 - and r denotes the sensor radius
 - To cover such a square of Θ (n log n) randomly placed sensors are necessary and sufficient

Theorem

- Let $n = A / (r^2 \pi)$
 - where A denotes the area of the square
 - and r denotes the sensor radius
- To cover such a square of Θ (n log n) randomly placed sensors are necessary and sufficient
- Proof sketch (lower bound):
 - The probability that a given point is not covered by a sensor is at least

 $1-r^2\pi/A = 1-1/n$

- Consider n such points with distance r
- The probability that at least 1/ n log n sensors do **not** cover one of these point is therefore

$$\left(1 - \frac{1}{n}\right)^{\frac{1}{2}n\log n} \ge \left(\frac{1}{4}\right)^{\frac{1}{2}\log n} = \frac{1}{n}$$

Hence, the expected number of uncovered points is 1

Algorithms for Radio Networks Christian Schindelhauer

University of Freiburg

Theorem

- Let $n = A / (r^2 \pi)$
 - where A denotes the area of the square
 - and r denotes the sensor radius
- To cover such a square of Θ (n log n) randomly placed sensors are necessary and sufficient
- Proof sketch (upper bound):
 - By c n log n random sensors every square of size r/3 x r/3 is covered with probability 1-n^{-k}
 - where k grows linear with c
 - Then the whole square is covered with probability 1-n^{-k-1}

Optimal Deterministic Bound

Nurmela, Östergard

 Covering a square with up to 30 equal circles (Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 62, HUT-TCS-A62, Helsinki University of Technology, 2000)

• How many circles can cover a square?

- A closed form solution is unknown
- However for a small number of circles the problem can be solved by exhaustive search

Algorithms for Radio Networks **Christian Schindelhauer**

Covering a square with up to 30

laboratorion tutkimusraportti 62,

korkeakoulun tietojenkäsittelyteoria

HUT-TCS-A62, Helsinki University

University of Freiburg

equal circles (Teknillisen

of Technology, 2000)

Christian Schindelhauer

University of Freiburg

Algorithms for Radio Networks Christian Schindelhauer

Nurmela, Östergard

 Covering a square with up to 30 equal circles (Teknillisen korkeakoulun tietojenkäsittelyteoria laboratorion tutkimusraportti 62, HUT-TCS-A62, Helsinki University of Technology, 2000)
 Computer Networks and Telematics University of Freiburg

n = 16

Algorithms for Radio Networks Christian Schindelhauer

 Covering a square with up to 30 equal circles (Teknillisen korkeakoulun tietojenkäsittelyteoria laboratorion tutkimusraportti 62, HUT-TCS-A62, Helsinki University of Technology, 2000)
 Computer Networks and Telematics

University of Freiburg

Algorithms for Radio Networks Christian Schindelhauer n = 17

14

- Nurmela, Östergard
 - Covering a square with up to 30 equal circles (Teknillisen korkeakoulun tietojenkäsittelyteoria laboratorion tutkimusraportti 62, HUT-TCS-A62, Helsinki University of Technology, 2000)
 Computer Networks and Telematics University of Freiburg

n	r_n	G	n	r_n	G
1	0.70710678118654752440	D_4	16	0.16942705159811602395	C_2
2	0.55901699437494742410	D_2	17	0.16568092957077472538	C_1
3	0.50389110926865935327	D_1	18	0.16063966359715453523	D_1
4	0.35355339059327376220	D_4	19	0.15784198174667375675	C_1
5	0.32616058400398728086	D_1	20	0.15224681123338031005	D_1
6	0.29872706223691915876	C_2	21	0.14895378955109932188	C_1
7	0.27429188517743176508	D_2	22	0.14369317712168800049	D_2
8	0.26030010588652494367	D_2	23	0.14124482238793135951	D_2
9	0.23063692781954790734	D_1	24	0.13830288328269767697	C_1
10	0.21823351279308384300	D_2	25	0.13354870656077049693	D_1
11	0.21251601649318384587	D_2	26	0.13176487561482596463	C_1
12	0.20227588920818008037	C_2	27	0.12863353450309966807	D_2
13	0.19431237143171902878	C_1	28	0.12731755346561372147	D_2
14	0.18551054726041864107	D_1	29	0.12555350796411353317	C_1
15	0.17966175993333219846	C_1	30	0.12203686881944873607	C_2

• Nurmela, Östergard

• Covering a square with up to 30 equal circles (Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 62, HUT-TCS-A62, Helsinki University of Technology, 2000)

Algorithms for Radio Networks Christian Schindelhauer

Art Gallery Problem

Given

- a room (described by polygon)
- Compute
 - Minimum number of cameras and their placement
 - such that the entire space is covered

Results

- Every room with n edges can be monitored by at most n / 3
- The exact solution is NP-hard
 - even in the two-dimensional case
- Polynomial time approximation with a factor O (log n)

Energy Saving Methdos

- Schedule for sleep cycles
 - MAC, routing protocol, sensoring
- Optimize transmission routes
 - many hops of few hops
- Selection of nodes depending on the charge battery status
 - data acquisition
 - change of cluster heads
 - route choice may consider battery status
- Reduction of the amount of data
 - data aggregation
 - compression
 - filtering

Lifetime of a Sensor Network

Wireless Sensor Networks (WSN)

- cheap and energy optimized sensors
- send data to sinks

Lifetime of the network

• is hard to analyze

Depends from

- network architecture, protocols
- event or input behavior
- definition of lifetime
- hardware, channel characteristics

Lifetime

On the Lifetime of Wireless Sensor Networks

- Yunxia Chen, Qing Zhao, Communication Letters, Vol. 9, No. 11, Nov. 2005
- Theorem
 - For a WSN where
 - E₀: non-rechargable inital energy E₀
 - P_c: constant continuous power consumption in the complete network
 - **E**[E_w]: expected waste of energy
 - λ : average number of reported events
 - **E**[E_r]: expected energy necessary to report an event

$$E[\mathcal{L}] = \frac{\mathcal{E}_0 - E[E_w]}{P_c + \lambda E[E_r]}$$

Greedy Lifetime Maximization

Question

•

- Which sensors should collect the data
- Greedy Algorithmus
 - Choose the sensor with the maximum energy efficiency index γ_i :

$$\gamma_i = e_i - E_r(c_i)$$

- E_r(c_i): Energy for the transport of a message for node i
- e_i: Available energy at the node i

Performance Greedy-Algorithm

Algorithms for Radio Networks Christian Schindelhauer

Lifetime Maximization by Scheduling

• Cardei, Du

- Improving Wireless Sensor Network Lifetime through Power Aware Organization, Wireless Networks 11, 333– 340, 2005
- Problem
 - Measurement points are covered by more than one sensors
 - Multiple measurements waste energy
- Solution
 - Activate only the nodes with minimum set-cover

Multiple Coverage of Sensors

Covering Set

Disjoint Set-Cover

Definition Disjoint Set-Cover (DSC)

Given

- n sensors $S = \{S_1, S_2, ..., S_n\}$
- m measurement points $T=\{T_1, T_2, ..., T_m\}$
- Sensor coverage $S_i \subseteq T$
- Compute
 - Maximal number of disjoint coverings, i.e.
 - disjoint sets M_1 , ..., M_k from S, such that each set covers the set T
- Motivation
 - The network lifetime increases by a factor of k

Cover (DSC)

Theorem

- DSC is NP-hard for two sets
- DSC is in general NP-hard
- DSC can not be approximated by a factor of 2 without solving an NP-hard problem
- Several heuristics are known

Heuristiks for DSC

- Slijepcevic Potkonjak 2001
 - Power Efficient Organization of Wireless Sensor Networks, IEEE International Conference on Communications
 - Greedy algorithm
 - Greedily selects a mimal covering set
 - Removed this one and repeated until no more covering set is found
- Cardei, Du 2006
 - Problem is represented as flow problem
 - This is solved as linear problem
 - The solution gives an approximation of the disjoint setcover problem

Comparison

Slijepcevic Potkonjak 2001

simple distributed greedy solution

• Cardei, Du 2006

• MC-MIP complex central algorithm

Outlook

- Disjoint sets of network nodes may not be useful
 - might be too far away from each other
 - important relay nodes are not activated
- Extension
 - Disjoint Connected Set Problem::
 - Find vertex-connected subgraph
 - Also NP-hard
- Similar heuristics exist

Disjoint Connected Set Problem

Disjoint Connected Set Problem

Literature Energy Harvesting

- Kansal, Hsu, Zahedi, Srivastava
 - Power management in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst. 6, 4, Sep. 2007

Motivation

Energy harvesting

- can remove batteries from WSNs
- potentially infinite lifetime
- active time can be increased (or reduced)

Example

- solar energy only available at daylight
- Energy concept
 - necessary for the entire period
 - regulates interplay of sleep phase, data rate and short term energy source

Harvesting Paradigma

- Typical task in battery operated WSN
 - minimize energy consumption
 - maximize lifetime
- Task in harvesting-WSN
 - continuous operation
 - i.e. infinite lifetime
 - term: energy-neutral operation

Possible Sources

- Piezoelectric effect
 - mechanical pressures produces voltage
- Thermoelectric effect
 - temperature difference of conductors with differen thermal coefficient
- Kinetic energy
 - e.g. self-rewinding watches
- Micro wind turbines
- Antennas
- Chemical sources,...

Differences Compared to Batteries

Time dependent

- form of operation has to be adapted over time
- sometimes not predictable
- Location dependent
 - · different nodes have have different energy
 - load balancing necessary
- Never ending supply
- New efficiency paradigm
 - utilization of energy for maximum performance
 - energy saving may result in unnecessary opportunity costs

Solutions without Power Management

Without energy buffer

- harvesting hardware has to supply maximal necessary energy level at minimum energy input
- only in special situation possible
 - e.g. light switch
- With energy buffer
 - power management system necessary

Power Management System

- Target
 - Providing the necessary energy from external energy source and energy buffer

Energy Sources

- Uncontrolled but predictable
 - e.g. daylight
- Uncontrolled and unpredictable
 - e.g. wind
- Controllable
 - energy is produced if necessary
 - e.g. light switch, dynamo on bike
- Partially controllable
 - energy is not always available
 - e.g. radio source in the room with changing reception

Harvesting Theory

- Ps(t): Power output from energy source a time t
- P_c(t): Energy demand at time t
- Without energy buffer
 - $P_s(t) \ge P_c(t)$: node is active
- Ideal energy buffer
 - Continuous operation if

$$\int_0^T P_c(t)dt \le \int_0^T P_s(t)dt + B_0 \quad \forall \quad T \in [0,\infty)$$

- where B_0 is the initial energy
- energy buffer is lossless, store any amount of energy

Harvesting Theory

- Ps(t): Power output from energy source a time t
- P_c(t): Energy consumed at time t
- Let $[x]^+ = \begin{cases} x & x \ge 0\\ 0 & x < 0 \end{cases}$
- Non-ideal energy buffer
 - Continuous operation if

$$B_0 + \eta \int_0^T [P_s(t) - P_c(t)]^+ dt - \int_0^T [P_c(t) - P_s(t)]^+ dt - \int_0^T P_{leak}(t) dt \ge 0$$

- B₀ is the initial energy
- η: efficiency of energy buffer
- P_{leak}(t): energy loss of the memory

Harvesting Theory

- P_s(t): Power output from energy source a time t
- P_c(t): Energy consumed at time t

• Let
$$[x]^+ = \begin{cases} x & x \ge 0\\ 0 & x < 0 \end{cases}$$

- Non-ideal energy buffer with limited reception B
 - Continuous_operation if

$$B_0 + \eta \int_0^T [P_s(t) - P_c(t)]^+ dt - \int_0^T [P_c(t) - P_s(t)]^+ dt - \int_0^T P_{leak}(t) dt \ge 0$$

- B_0 is the initial energy of the buffer
- η: efficiency of energy buffer
- P_{leak}(t): leakage power of the energy buffer

$$B_0 + \eta \int_0^T [P_s(t) - P_c(t)]^+ dt - \int_0^T [P_c(t) - P_s(t)]^+ dt - \int_0^T P_{leak}(t) dt \le B$$

Algorithms for Radio Networks Christian Schindelhauer

Model of Benign Energy Behavior

 If the power source P_s(t) occurs regularly, then it satisfies the following equations

$$\int_{\tau}^{\tau+T} P_{\mathbf{s}}(t) dt \leq \rho_{\mathbf{1}} T + \sigma_{1}$$

$$\int_{\tau}^{\tau+T} P_{\mathbf{s}}(t) dt \geq \rho_{\mathbf{1}} T - \sigma_{2}$$

$$\int_{\tau}^{\tau+T} P_{\mathbf{s}}(t) dt \geq \rho_{\mathbf{1}} T - \sigma_{2}$$

200

Fig. 2. Solar energy based charging power recorded for 9 days

Algorithms for Radio Networks Christian Schindelhauer Computer Networks and Telematics University of Freiburg

Model of Benign Energy Behavior

Benign energy consumption:

• P_c(t) satisfies the following

$$\int_{\tau}^{\tau+T} P_{\rm c}(t) dt \leq \rho_2^T + \sigma_3$$
$$\int_{\tau}^{\tau+T} P_{\rm c}(t) dt \geq \rho_2^T - \sigma_4$$

Energy Neutrality for Benign Sources

Substitution into the non-ideal energy source inequality:

$$B_0 + \eta \cdot \min\{\int_T P_s(t)dt\} - \max\{\int_T P_c(t)dt\} - \int_T P_{leak}(t)dt \ge 0$$

$$\Rightarrow B_0 + \eta(\rho_1 T - \sigma_2) - (\rho_2 T + \sigma_3) - \rho_{leak}T \ge 0$$

- This inequality must hold for T=0 $B_0 \ge \eta \sigma_2 + \sigma_3$
- This condition must hold for all T

 $\eta \rho_1 - \rho_{\text{leak}} \ge \rho_2$

 If these inequalities hold then continuous operation can be guaranteed

Necessary Energy Buffer for Benign Energy Sources

Substituting in the second equation

$$B_{\bullet} + \eta \cdot \max\{\int_{T} P_{s}(t)dt\} - \min\{\int_{T} P_{c}(t)dt\} - \int_{T} P_{leak}(t)dt \leq B$$

$$\Rightarrow B_{0} + \eta(\rho_{1}T + \sigma_{1}) - (\rho_{2}T - \sigma_{4}) - \rho_{leak}T \leq B$$

$$\bullet \text{ For T=0 we need}$$

 $\mathsf{B}_0 + \eta(\sigma_1 - \sigma_4) \leq \mathsf{B}$

- Substitution of $B_0 \ge \eta \sigma_2 + \sigma_3$ yields $B \ge \eta(\sigma_1 + \sigma_2) + \sigma_3 - \sigma_4$
- For $T \to \infty$ we have

 $\eta \rho_1 - \rho_{\text{leak}} \leq \rho_2$

• This condition may be violated without problems

Energy Neutral Operation

Theorem

- For benign energy sources the energy neutrality can be satisfied if the following conditions apply
 - $\rho_2 \leq \eta \rho_1 \rho_{\text{leak}}$
 - B $\geq \eta \sigma_1 + \eta \sigma_2 + \sigma_3$
 - $B_0 \ge \eta \sigma_2 + \sigma_3$

Fig. 2. Solar energy based charging power recorded for 9 days

Parameter	Value	Units
$ ho_1$	23.6	mW
σ_1	1.4639×10^{3}	J
σ_2	1.8566×10^{3}	J

Further Considerations

- The behavior of energy sources can be learned
 - As a result, the available energy can be calculated
 - The task can be adapted to the energy supply
- Thereby
 - Nodes with better energy situation can take over routing
 - Measurements can occur seldomer, but will never stop

Algorithms for Radio Networks

Wireless Sensor Networks: Sensor Coverage & Lifetime

University of Freiburg Technical Faculty Computer Networks and Telematics Christian Schindelhauer

