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Localization

‣ Localization in an empty environment?
• Requires some “stuff” around
• Determine the physical position or logical location 

‣ Reference points (“landmarks”)
• Natural: Trees, mountains, river bend, earth’s surface, sun, stars, 

...
• Artificial: Road signs, Surveyor’s mark, Retro-reflector, buoys, 

lighthouse, radio beacon, ...
‣ Coordinate systems

• Global coordinate frame, Earth coordinates
• Local reference frame: Cartesian grid, floor tiles
• Absolute or relative coordinates
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Localization

‣ Applications
• Surveying, geodesy 
• Naval navigation, aviation, space flight
• Navigation of people inside buildings 

in urban areas
• Cars on roads, logistics
• Navigation of robots: Autonomous mobile units
• Industrial machines, tools: Drills, rivet hammers
• Networks: Routing algorithms, sensor networks
• ...and many more!
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Localization

‣ Parameter
• Centralized or distributed computing
• Availability of position information: Active vs. passive localization
• Application

- Indoors, outdoors, global
• Sources of information: Sound, light, radio signal, magnetic field, ...

‣ Metrics
• accuracy
• precision
• other costs
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Sources of Information

‣ Neighborhood information
• Range provides coarse location 

information
- e.g. GSM / UMTS cell, wireless IDs

‣ Triangulation and trilateration
• Angle differences
• distance measurement

‣ Analysis of the environment
• Characteristic "signature" by radio 

conditions in the environment

‣ Inertial navigation systems
• Measurement of acceleration and rotation
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RSSI

‣ Received Signal Strength Indicator
• Using the path loss at a known transmission power
• Measurement of the received signal

• Path loss exponent α, 
transmission power Ptx

• Problem: High error rate

[Sichitiu and Ramadurai, MASS 2004]
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RSSI

[Ramadurai, Sichitiu, 
Localization in Wireless 
Sensor Networks, 
A Probabilistic Approach, 
ICWN 2003]

‣ Problem: high error rate
• Probability distribution for RSSI and given transmission power
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RSSI

‣ Problem: high error rate
• Probability distribution for varying RSSI and  

distance

[Ramadurai, Sichitiu, Localization 
in Wireless Sensor Networks, A 
Probabilistic Approach, ICWN 
2003]
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RSSI

‣ Problem: high error rate
• Probability distribution for varying RSSI and  distance

[Sichitiu and Ramadurai, 
MASS 2004]
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Time of Arrival

‣ Time of arrival (TOA)
• Transmission time (“Time of flight”) is measured
• Transmission time = Reception time – Send time
• Results from the quotient:

- Transmission time = distance / speed signal
‣ Problem

• Positions of measurement points (anchors) must 
be known (usually...)

• Accurate time measurement
• Clock synchronization
• Relative ranges require more anchors
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Time Difference of Arrival (ToA)

‣ Two different signals with different transmission 
speeds
• E.g. ultrasound and radio signal, “thunderstorm”
• Main component of the speed of sound
• Calculate the different arrival times is distance
• If one signal is very fast (e.g. “light”), eliminate it

‣ Problems:
• calibration (hardware delay)
• special hardware is required
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Round Trip time (ToA)

‣ Two way communication, send a signal back and 
forth between two transceivers 
• E.g. radio signal, sound signal
• Distance = 1/2 * Round trip time / c

‣ Problems:
• Again: calibration (hardware delay)
• Requires two transmitters and two receivers

‣ Similar: Measure distance to an obstacle (reflection)
• Distance measurement by Laser or ultrasound 
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Determination of Angles
‣ Optical angle measurement

• done manually, sextant, theodolite
‣ laser beams

• maximum accuracy
• Controlled by rotating mirrors

‣ Directional antennas
• free joint-directional or 

parabolic antennas
‣ Smart Antennae (antenna array)

• (still) low precision (up to 1-2 degrees)
‣ Gyroscope

[Wikipedia]
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Determination of Ranges
‣ Measuring tape
‣ Laser range finders: Measure phase shift
‣ Laser scanners: Depth imaging
‣ RF ranging: Radar
‣ Optical: ToF camera

[Würth, 2010]
[Sick, 2014]



15Algorithms for Radio Networks
Prof. Christian Schindelhauer

Computer Networks and Telematics
University of Freiburg

Odometry
‣ Measurement of travel distance

• number of footsteps
• odometer of a wheeled machine, 
• Mobile robot: Monitor individual wheels and steering angle
• optical flow of vision / camera

‣ Integrate trajectory from a starting point (“dead reckoning”)
‣ Problems:

• Foot step size, wheel slip, different diameter of wheels
• Error grows over time

[AIS, University of  Freiburg]
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Coarse Localization 
Techniques

‣ Hop-distance
• in dense ad hoc networks or wireless sensor networks
• approximate position by the number of hops to anchor points

‣ Overlapping connections
• position at the intersection of the received transmission 

circuits
‣ Localization point in the triangle

• determination of triangles of anchor points
- in which the node lies

• overlap provides approximate position
‣ “Fingerprinting” of signal strength measures
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Localization methods

‣ Dead Reckoning: Relative localization depending on course 
and traveled distance

‣ Triangulation: Calculate the intersection of angular bearings
‣ Trilateration: Calculate the intersection of three range 

measurements (circles)
‣ Multilateration with absolute ranges: Calculate the 

intersection of at least four range measurements 
• In the plane: circles, in space: spheres
• May be over-determined equation system

‣ Multilateration with relative ranges: Hyperbolic multilateration
• Multilateration with unknown send time

• Calculate intersection of hyperbolas / hyperboloids
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Dead Reckoning

‣ Relative vector navigation, vectors of orientation φi

and distance di

‣ Animals: “path integration” by special regions in 
hippocampus of desert ants (Wehner, 2003)

‣ Dead reckoning scheme:
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Dead Reckoning

‣ Example: Navigation of ships / airplanes 
• if course is known (compass)
• if traveled distance is known (ship log, pitot tube)

‣ Prone to drift (water current, wind, wheel slip)
‣ Errors add up over time
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Inertial Navigation

‣ Consider orientation and traveled distance as 
direction vector st at time t.  

‣ What if only acceleration at is measured? 
• Inertial navigation, double integration 

• Often also rotation is measured 
(angular velocity)

‣ Combine accelerometer, gyroscope, 
and compass:
• Inertial Measurement Unit (IMU)

[F. Höflinger, 2013]
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Inertial Navigation

‣ Foot-mounted MEMS-IMU
• Errors add up over time

‣ Compensation: Zero velocity update
• Detect footstep
• Translation velocity is zero at this moment!

[Zhang, 2013]
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Triangulation

‣ Given a side of known length and two adjacent angles 
‣ In the plane: 

• Calculate the intersection point of the other sides
• Duality with trilateration: Triangle congruency 

(angle-side-angle) (side-side-side)
‣ On earth surface: 

• More complicated (spherical trigonometry)
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Triangulation

‣ Example: Navigation of ships / airplanes (cross 
bearing triangulation)
• 1) Bearings of two objects on a map

2) Time-shifted bearings of the same object
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Triangulation

‣ Given a side of known length and the opposite angle
• Triangle congruency: Does not define a triangle!
• What else is possible?

‣ Given a lighthouse of known height h
• Measurement of angle φ, use a sextant
• Calculation of distance d = h / tan(φ)
• Measurement of lighthouse bearing

position in polar coordinates 
‣ Height of lighthouse not known

• Sail towards lighthouse
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Triangulation

‣ Given a side of known length and the opposite angle
• Measure angle φ of two landmarks (by theodolite 

or by laser scanner)
• If φ= 90°: Ship’s position resides on Thales’ circle
• Other angles: generalization of Thales’ circle
• Circle of equal angles

(“Fasskreisbogen”)
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Triangulation

‣ Given a side of known length and the opposite angle
• Calculate position by a third landmark
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Triangulation

‣ Height of Mt. Everest
• 8,840 m above NN (Sickdhar, 1856)
• 8,848 m (Survey 

of India, 1955)
• 8,850 m (GPS, 

1999)
• 8,849 m (Radar 

reflectors, 2004)
• ...

[A. Waugh, Mt. Everst & Deodanga, 1862.]
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Trilateration

‣ Assuming the distance to three points is given
‣ System of equations

• (xi, yi): coordinates of an anchor point i,
• r distance from the anchor point i
• (xu, yu): unknown coordinates of a node

‣ Problem: Quadratic equations
• Transformations lead to a linear system of 

equations
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Trilateration

‣ System of equations

‣ Transformation

• results in:
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Trilateration as a Linear 
System of Equations

‣ Forming a system of equations

‣ Example: 
• (x1, y1) = (2,1), (x2, y2) = (5,4), (x3, y3) = (8,2), 
• r1 = 101/2 , r2 = 2, r3 = 3

(xu,yu) = (5,2)
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Trilateration as a Linear 
System of Equations

‣ In three dimensions
• Intersection of four spheres 

‣ Solve Ax = b x = A-1b



32Algorithms for Radio Networks
Prof. Christian Schindelhauer

Computer Networks and Telematics
University of Freiburg

Trilateration

‣ In case of measurement errors

‣ Averaging: e.g. centroid of triangle
[F. Höflinger, 2013]



33Algorithms for Radio Networks
Prof. Christian Schindelhauer

Computer Networks and Telematics
University of Freiburg

Trilateration

‣ Measurement errors
• Small distance errors can lead to large position errors

‣ flip ambiguity from noise

or
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Multilateration with 
absolute distances

‣ Multilateration (absolute distances): Calculate the 
intersection of at least four distance measurements 
• May be over-determined equation system: More 

equations than variables
• “No solution” in case of measurement errors

‣ Minimize sum of quadratic residuals: Least squares
‣ Vector notation

• Solve (ATA)x = ATb x = (ATA)-1 ATb

• Matrix inverse by Gauss-Jordan elimination
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Multilateration with 
relative distances

‣ Multilateration (relative): Calculate the intersection of relative
distance measurements 
• Emission time e unknown!
• Measure only reception times Ti, i = 1, ..., n
• System of equations Ti  = e + || ri – s || / c

• ...for a signal traveling from s to receivers ri

‣ Subtract two absolute times Ti and Tj: 
• Ti  – Tj = || ri – s || / c – || rj – s || / c  =: Δt    (i, j = 1, ..., n)

• System of hyperbolic equations
• Time Difference of Arrival Δt, relative distance Δd = cΔt
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Multilateration with 
relative distances 

‣ Advantages
• No cooperation of signal emitter
• Hardware delays cancel out (both emitter and receiver)
• Passive localization / natural signal sources

‣ Disadvantages
• Larger number of unknown values: Position and time
• Synchronization still (usually) required
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Anchor-free localization

‣ “Anchor-free localization”: 
• Hyperbolic multilateration 
• Unknown emitters sj, and unknown receivers ri

‣ Advantages:
• No need to measure receiver positions
• Self-positioning by passive information from the 

surroundings
‣ Disadvantages:

• Even larger number of unknown variables
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Anchor-free localization

‣ For absolute distances dik:
• Solve || ri – sk || = dik         (i, j = 1, ..., n ;  k = 1, ..., m)

• Problem of intersecting circles / spheres

• Bipartite distance graph: G = ({ri}, {sk}, {d(i, k)})
• Minimum case closed-from solutions known [Kuang, et al., 

ICASSP 2013]
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Anchor-free localization

‣ For relative distances Δdijk = dik – djk:
• Solve || ri – sk || – || rj – sk ||   =  Δdijk      

• Problem of intersecting hyperbolas / hyperboloids
• Closed-form solutions only for larger problem sets 

[Pollefeys and Nister, ICASSP 2008], [Kuang and Åström, EUSIPCO 2013]

• Minimum problem set: Iterative/recursive approximations 
[Wendeberg and Schindelhauer, Algosensors 2012]



40Algorithms for Radio Networks
Prof. Christian Schindelhauer

Computer Networks and Telematics
University of Freiburg

Anchor-free localization

‣ Degrees of freedom

G2D = 2n + 3m – nm – 3 G3D = 3n + 4m – nm – 6

Tik  = eik + || ri – sk || / c

(eik, ri, sk unknown)
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Anchor-free localization

4 / 6 (sync.)
4 / 9 (unsync.)

3 / 3 (sync.)
3 / 5 (unsync.)

far-field setting

5 / 10
6 /  7

4 / 6general setting

3D2D

Minimum number of required receivers / emitters

‣ Minimum cases
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Anchor-free localization

‣ Strategies:
(1.)  Estimate receiver topology from known information
(2.)  Assume large number of emitters and receivers
(3.)  Assume specific distribution of emitters and receivers
(4.)  Heat the CPU: Optimization, branch-and-bound search, ...
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‣ (1.) Topology: Hull element 
• “The receiver which receives the last timestamp is an 

element of the convex hull”

If exists i such that for all k: Ti ≥ Tk, then holds:
(mi – s)T n0 = ||mi – s|| ≥ ||mk – s|| ≥ (mi – s)T n0

n0 = n / ||n||

Anchor-free localization
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‣ (2.) Large number of signals: Statistical assumptions
[Schindelhauer, et al., SIROCCO 2011]

• Lemma: Many signals occur from the long side of 
any two receivers.

• Estimate the distance: d ~ c/2 (Δtmax – Δtmin ) 

Anchor-free localization
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Anchor-free localization

‣ (3.) Assume that signals occur from far away:
• “far-field assumption”, linear frontier of signal propagation

‣ The Ellipsoid TDoA Method [Wendeberg, et al., TCS, 2012]

• Time differences of three receivers form an ellipse 

top-down view time differences
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Anchor-free localization

‣ (4.) Two-phased branch-and-bound algorithm in 2D
[Wendeberg and Schindelhauer, ALGOSENSORS 2012]

1.“Bound”: Test sub-problems
if feasible up to error ε ~ s
with regard to measure-
ments Δtij. Satisfy
| || mi – sj || – || m1 – sj || – Δtij | ≤ ε (i > 1),
or discard sub-problem

2.“Branch”: Divide feasible 
problems of size sn into 
sub-problems of size (s/2)n
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Anchor-free localization

‣ Numeric simulation
• Solution always found up to bound ε
• In case of measurement errors: Solution up to εtdoa

‣ Behavior of search tree
• Breadth-first search
• Exponential growth / 

convergence of search tree
• Runtime:

‣ Minimum case FPTAS 
to Calibration-free TDoA
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“Calibration-Free 
Tracking System”

‣ Anchor-free TDoA Ultrasound Tracking System
[Wendeberg, Höflinger, Schindelhauer, and Reindl, LBS, 2013]

• In collaboration with IMTEK / Lab. for Electrical 
Instrumentation (EMP)

• 40 kHz ultrasound moving transmitter and fixed receivers
• Receivers synchronized in a Wi-Fi network
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“Calibration-Free 
Tracking System”

‣ Tracking system is “calibration-free”
• Arbitrary placement of ultrasound receivers
• Compute positions of receivers by TDoA measures
• Precision of ~ 5 cm
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“Calibration-Free 
Tracking System”

http://www.youtube.com/watch?v=V85wejcYyXs



51Algorithms for Radio Networks
Prof. Christian Schindelhauer

Computer Networks and Telematics
University of Freiburg

Some More Available 
Localization Systems

‣ Land stations
• Decca
• LORAN-C
• Mobile cells
• WLAN identification 

‣ Satellite-based
• NAVSTAR-GPS
• GLONASS
• Galileo
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Decca

‣ W. O’Brien, Decca navigation system, ca. 1942 – 2000
‣ Hyperbolic multilateration
• One main sender
• Three slave senders 

(distance 100 – 200 km)
• Senders synchronized

‣ TDoA by phase difference
of continuous harmonics, 
e.g. {6f, 5f, 8f, 9f }, f = 14.167 kHz

‣ Point of departure must be known! (periodic phases)
‣ Range ca. 400 – 700 km, precision ca. 0.05 – 1 km
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LORAN-C

‣ LOng RANge navigation system, 1957 – now
‣ Hyperbolic multilateration
• Chains of senders

(distance 100+ km)
‣ TDoA of discrete pulses of 

100 kHz, identification of 
senders by CDMA (no overlap)

‣ Range up to 1,000 km, 
precision 0.01 – 0.1 km 

[Wikipedia]
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GNSS: GPS (I)

‣ Global Positioning System (GPS), US Dpt. of Defense, since 1985,
no “selective availability” since 2000

‣ 24+ GPS satellites 
• earth orbit 20,000 km 
• send ephemerides (trajectory data) and atomic clock time
• Frequency: 1.228 / 1.575 GHz

‣ GPS receiver 
• measures TDoA of satellite messages (by correlation)
• has no precise clock!
• calculates “pseudoranges”, 3D coordinates and time
• requires at least 4 satellites (more is better)
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GNSS: GPS (II)

‣ GPS requires line-of-sight: No signal in forest, dense urban areas, 
indoors

‣ Precision: 5 – 15 m (good signal)
‣ Differential GPS
• Reference receiver, compensating for atmospheric disturbances, 

precision up to 0.1 m
• Modern geodetic systems: Even millimeters!
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GNSS: GLONASS

‣ GLONASS, russian GNSS, since 1993 (25 satellites)
‣ Technology similar to NAVSTAR-GPS
‣ Limited operation: in 2001 only 7 satellites alive, in 2011 available 

again (ca. 24 satellites)
‣ Loss of 3 satellites each in Dec. 2010 and in July 2013
‣ Supported by modern smart phones (Nokia Lumia series, 

Samsung Galaxy series, Apple iPhone 4S and later, and others)
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GNSS: Galileo

‣ Galileo, european GNSS, adopted in 2008
‣ Technology similar to NAVSTAR-GPS
‣ Up to 30 satellites planned
‣ Availability expected for 2014 with 18 satellites



58Algorithms for Radio Networks
Prof. Christian Schindelhauer

Computer Networks and Telematics
University of Freiburg

Possible Improvements

‣ Combination of different methods
• magnetic field
• air pressure
• sonar

‣ Kalman filter
• Extension of Markov filters

‣ Motion sensors
• gyroscopes
• acceleration sensors
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