Communication Systems

ICMP, NAT
Copyright Warning

- This lecture is already stolen
- If you copy it please ask the author
 - Prof. Dr. Gerhard Schneider
- like I did
Internet Protocol – the Universal Service

- By now: Introduced IPv4 operation and protocol headers
- But spared:
 - Details on packet fragmentation as a central concept in IP (as an universal service)
 - Helper protocol to IP to cope with problems of stateless operation (how to get information on failures)
- Then: Special routing in IPv4 NAT (main issue of the practical part)
IP – Fragmentation of Packets

- Adapting datagram size one of the most important tasks of the Communication Systems protocol:
- IP datagrams itself cannot exceed 64kbyte
- Lower protocol levels report MTU (max. transfer unit)
 - Linux loopback 16384byte
 - Ethernet frames offer max. payload of 1500byte
 - ATM offers 48byte
 - slow modem-ppp connections 296byte packet length
- The tool ifconfig or ip (first practical course) reports MTU of each interface
IP – Fragmentation of Packets

- Fragmentation & Reassembly
 - divide network-layer datagram into multiple link-layer units, all have to be equal or smaller than link MTU size
 - further fragmentation may be needed if MTU is decreased along the path again
 - sometimes it is cleverer to set MTU smaller at source to avoid later fragmentation
 - reconstruct datagram at final station
- Each fragment otherwise acts as a complete, routeable datagram
- Datagrams are identified by the (source, destination, identification) triple
- Concept of fragmentation changes with IPv6
IP – Fragmentation of Packets

› If fragmented, identification triple is copied into each resulting packet
› Also contains (offset, length, more) triple
 • more - boolean indicates is last fragment
 • offset - relative to original datagram
› Relating fragments to original datagram provides:
 • Tolerance to re-ordering and duplication
 • Ability to fragment fragments (!)
IP – Fragmentation of Packets

- IP fragments are re-assembled at final destination before datagram is passed up to transport layer
- Routers do not reassemble fragmented datagrams
 - Allows for independent routing of fragments
 - Reduces complexity (need for CPU and memory) in routers
- Problems with fragmenting:
 - Loss of 1 or more fragments implies loss of datagram at the IP layer
 - IP is best effort, provides no retransmission, will time-out if frag(s) appear to be lost
 - May be interesting for DoS attacks
IP – Fragmentation of Packets

- Avoid fragmentation through computing path MTU
 - Problems if path changes (dynamic routing) and new path has smaller MTU along its way
- Adapting size of packets in the source machine according to the “minimum MTU”: Path MTU Discovery
 - IPv6 uses MTU discovery and assumes standard minimum MTU
- If datagram size is smaller then MTU, no fragmentation needed
- How to do this?
 - Probe network for largest size that will fit
 - If possible, have network tell us this size
 - Operates through ICMP messaging (presented later on)
Internet Control Message Protocol (ICMP)

- Remember IP packet orientated
- It provides no direct way of discovering the fate of a packet
 - Send & forget principle
 - Packets could be delayed for too long or even lost
 - Destination could be unreachable
 - Machine itself (routing broken, machine down, ...)
 - Specific protocol or port (above layer 3)
- Upper layer protocols or application may implement time out or helper protocol on network layer could be introduced ...
Internet Control Message Protocol (ICMP)

- Want a mechanism for error reporting and information exchange
 - ICMP Protocol defines “extensions” to the unreliable IP
 - Logically part of IP module, but is actually encapsulated within IP
 - Provides IP module to IP module message delivery
 - Error and information reporting only
 - Queries: client/server info request/response
 - Errors: reports of error conditions
 - Restrictions are placed on the generation of ICMP messages to avoid cascades
ICMP

- Restrictions for use of ICMP messages
- ICMP messages are not allowed to be sent in response to:
 - an ICMP error message (ok for queries)
 - datagrams failing header validation tests
 - broadcast or multicast IP datagrams
 - link-layer broadcast or multicast frames
 - invalid source address or zero network prefix
 - any fragment other than the first
ICMP Header

- Encapsulated as IP payload, common header:
 - Type field is 1 of 15 message types
 - Code indicates subtypes
 - Checksum covers entire ICMP message
ICMP Error Message Data

- Historically, ICMP errors returned the offending IP header and 1st 8 data bytes

- Internet Control Message Protocol
 - Type: 3 (Destination unreachable)
 - Code: 3 (Port unreachable)
 - Checksum: 0x1b31 (correct)

 - Version: 4
 - Header length: 20 bytes
 - Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 - Total Length: 334
 - Identification: 0x845c (33884)
 - Flags: 0x00
 - Fragment offset: 0
 - Time to live: 128
 - Protocol: UDP (0x11)
 - Header checksum: 0x985a (correct)

- User Datagram Protocol, Src Port: bootpc (68), Dst Port: bootps (67)
- Bootstrap Protocol
ICMP Error Message Data

- Test pattern (in hex) could be defined with ping tool (helps for easier identification of packets -> practical course)
- No longer adequate with more complicated headers like IP in IP tunnels
- New rules say should contain as much as original datagram as possible, without the length of ICMP datagram being larger then 576 bytes (standard Internet min size)
- Error Message Types (first header field):
 - 3 = Destination Unreachable, 4 = Source Quench
 - 5 = Redirect, 11 = Time Exceeded, 12 = Parameter Problem
ICMP Query Message Types

- 0 = Echo Reply ("ping response") and 8 = Echo Request ("ping query")
 - Example given last slide
 - Well known from the widely used ping command
 - Should not be blocked, needed for easy network debugging
- 9 = Router Advertisement, 10 = Router Solicitation
- 13 = Time Stamp Request, 14 = Time Stamp Reply
- 17 = Address Mask Request, 18 = Address Mask Reply
- Most of the ICMP messages named last are blocked because of easy misuse (redirection of routes for packet sniffing, spoofing, ...)
ICMP – Destination Unreachable

- Unreachable entities (codes):
 - 0: network
 - 1: host
 - 2: protocol
 - 3: port
 - Destination in general because of:
 - 4: frag needed, but DF set
 - 5: source route failed
- Network Unreachable generated by router lacking any route to destination
ICMP – Destination Unreachable

- Host Unreachable indicates last hop router cannot contact destination
- Protocol Unreachable: host lacks a layer-4 protocol implementation
- Port Unreachable no process bound to port (usually with UDP)
- Code 4 indicates the datagram required fragmentation but the DF bit was set
- Newer implementations replace (unused) 2nd word of ICMP header with next MTU
- MTU info returned to host, where it can subsequently alter its packet size to avoid fragmentation (process path MTU discovery)
ICMP – Further Messages

- Source Quench: Initial idea was that routers could generate "slow down" messages
- Problem is generating more traffic during periods of high traffic is not very attractive
- Currently, routers should not generate source quench ICMP messages
 - May generate much additional traffic in already congested networks
 - May interfere with TCP flow control
ICMP – Further Messages

- Time Exceeded (type 11)
- Indicates IP packet's delivery time has been exceeded
- Code field values:
 - 0: TTL exceeded in transit
 - 1: fragment reassembly time exceeded
- Parameter problem (type 12) - General catch-all for any delivery error not otherwise covered
- ICMP Router Solicitation, router advertisement (type 10 – finding nearby routers) is mostly replaced by DHCP which will be discussed next ...
ICMP – Redirect

- Indicates wrong router on network is being used as first hop. Redirect indicates which router to use instead.
- May be misused for redirecting traffic from/to a host (sniffing, hijacking packets, ...).
ICMP – Redirect

- Host sends packet to default router (as listed in its routing table)
- Designated router sends ICMP redirect, because default router is in the same subnet (one hop could be saved if sent directly)
NAT – Special Routing in IPv4

- Talked of standard concept of IPv4 routing last lecture
- Original idea of IP networking – end-to-end routing (present in the IP header via source and destination address)
- Special requirements, beginning of IPv4 addresses shortage and security considerations introduced NAT
- Network Address Translation (NAT) process of modifying network address information in packet headers while transiting a router
- Idea: Map one address space to another, typically requiring
 - Rewrite of source and/or destination address in layer 3 IP header
 - And/or rewrite of port numbers in layer 4 headers
NAT – Typology

- Two levels of network address translation.
 - Basic NAT – IP address translation only, rather seldom used e.g. to directly map a routed IP to a machine in a private network
 - Often term Port Address Translation (PAT) or Network Address Port Translation, NAPT – emphasizing the translation of both IP addresses and port numbers
- NAT involving translation of the source IP address and/or source port – source NAT or SNAT
 - Rewriting IP of originating machine, typically the case in masquerading NAT
- NAT involving translation of the destination IP address and/or destination port – destination NAT or SNAT
 - Typical scenario of port forwarding over a NAT router
NAT – IP Masquerading

- DNAT and SNAT often found together in many router setups
- Today: NAT typically synonymous with IP masquerading, where a “private” address space mapped to (single) public IP address(es)
 - Popular from mid-1990's NAT as a tool for alleviating the IPv4 address shortage
 - Especially found in countries with lesser allotted address space than Northern America and Europe
- NAT is not without problems
 - Breaking the concept of end-to-end addressing – the original source of a packet is hidden behind the masquerading gateway
 - Communication does not flow symmetrical any more – 1:n mapping in e.g. masquerading allows uni directional setups of communication channels only
NAT – Problems on Network and Transport Layer

- **ICMP problems**
 - may or may not correctly parse ICMP packets, depending on whether the payload is interpreted by a host on the "inside" or "outside" of translation

- **Checksum recalculation**
 - IP header checksum has to be recomputed (changed source and/or destination addresses)
 - Fragmented packets needs to be reassembled to allow higher level checksumming corrected: TCP and UDP use checksums covering their respective headers, the data and a "pseudo-header" with source and destination IP addresses
 - Thus MTU path discovery (RFC 1191, used in IPv6 too) might be a good idea
NAT – Problems on Application Layer

- Special applications
 - FTP in active mode with separate connections for control and data traffic: When requesting a file transfer host behind NAT will fail using its IP address and some port
 - SIP puts IP information (for setup of RTP channels, later lectures) into the application layer headers
 - Application Layer Gateway (ALG) could fix the issue: special software running on a NAT router updating payload data
 - Problem: ALG needed for every affected protocol
 - Another possible solution:
 - NAT traversal techniques like STUN
 - UPnP (Universal Plug and Play) requiring cooperation of the NAT device (security risk)
NAT – Operation Problems

- Stateful NAT tables
 - Router keeps entry for each connection
 - List could grow significantly, slowing down packet processing
 - Typically short living entries in NAT table
 - Failing connections of long living services like SSH
 - Or keep-alive procedures like in SIP could reduce battery saving efforts in mobile devices
Communication Systems