Solution for Exercise No. 4

Algorithms and Methods for Distributed Storage Winter 2008/09

Exercise 7 Compute the inverse matrix over $G F[2]$ of

$$
\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

using the Gaussian elimination method.

$$
(A \mid I):=\left(\begin{array}{lll|lll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \Rightarrow\left(\begin{array}{lll|lll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)=\left(I \mid A^{-1}\right)
$$

(Gauss-Jordan-Algorithm using element-wise XOR as elementary row operation)

Exercise 8 Consider the Liberation Code for a RAID-6 system with 5 hard disks (three data words and two check words). The word length is three bits.

1. Give the full GF[2] matrix to compute P and Q.

The coding distribution matrix (CDM) consists of one row of 3×3-identity matrices (for the parity word P) and another row of coding matrics X_{i} (for the code word Q).

$$
\begin{aligned}
& X_{0}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad X_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \quad X_{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right] \quad I^{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \mathrm{CDM}=\left[\begin{array}{lll}
I^{3} & I^{3} & I^{3} \\
X_{0} & X_{1} & X_{2}
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

The full binary distribution matrix is as follows:

$$
\mathrm{BDM}=\left[\begin{array}{ccc}
I^{3} & 0 & 0 \\
0 & I^{3} & 0 \\
0 & 0 & I^{3} \\
I^{3} & I^{3} & I^{3} \\
X_{0} & X_{1} & X_{2}
\end{array}\right]
$$

2. Compute P and Q for the inputs $D_{0}=010, D_{1}=011, D_{2}=100$.

$$
\text { DATA }=\left[\begin{array}{c}
D_{0} \\
D_{1} \\
D_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right] \quad \mathrm{PQ}:=\left[\begin{array}{c}
P \\
Q
\end{array}\right]=\mathrm{CDM} \cdot \mathrm{DATA}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1 \\
0 \\
1
\end{array}\right]
$$

3. Now the hard disks with D_{1} and D_{2} are not available. Compute their contents based on the knowledge $D_{0}=000, P=110, Q=111$.

We consider the last 9 rows of the BDM and calculate the inverse:

$$
B:=\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0
\end{array}\right] \quad B^{-1}:=\left[\begin{array}{lllllllll}
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The last 6 rows of B^{-1} give the inverse coding matrix:

$$
\mathrm{CDM}^{\prime}:=\left[\begin{array}{lllllllll}
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Recovering D_{0} and D_{1} from the original $\left(D_{2}, P, Q\right)$:

$$
V:=\left[\begin{array}{c}
D_{2} \\
P \\
Q
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
1 \\
1 \\
0 \\
1
\end{array}\right] \quad\left[\begin{array}{c}
D_{0} \\
D_{1}
\end{array}\right]=V \cdot \mathrm{CDM}^{\prime}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

Recovering D_{1} and D_{2} from $D_{0}=000, P=110, Q=111$:

$$
V^{\prime}:=\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
1 \\
0 \\
1 \\
1 \\
1
\end{array}\right] \quad\left[\begin{array}{c}
D_{0} \\
D_{1}
\end{array}\right]=V^{\prime} \cdot \mathrm{CDM}^{\prime}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

