Algorithms and Methods for Distributed Storage Networks
4: Volume Manager and RAID
Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08
RAID

- Redundant Array of Independent Disks
 - Patterson, Gibson, Katz, „A Case for Redundant Array of Inexpensive Disks“, 1987

- Motivation
 - Redundancy
 - error correction and fault tolerance
 - Performance (transfer rates)
 - Large logical volumes
 - Exchange of hard disks, increase of storage during operation
 - Cost reduction by use of inexpensive hard disks
Raid 0

- **Striped set without parity**
 - Data is broken into fragments
 - Fragments are distributed to the disks
- **Improves transfer rates**
- **No error correction or redundancy**
- **Greater disk of data loss**
 - compared to one disk
- **Capacity fully available**

http://en.wikipedia.org/wiki/RAID
Raid 1

- **Mirrored set without parity**
 - Fragments are stored on all disks

- **Performance**
 - if multi-threaded operating system allows split seeks then
 - faster read performance
 - write performance slightly reduced

- **Error correction or redundancy**
 - all but one hard disks can fail without any data damage

- **Capacity reduced by factor 2**

http://en.wikipedia.org/wiki/RAID
RAID 2

› Hamming Code Parity
› Disks are synchronized and striped in very small stripes
› Hamming codes error correction is calculated across corresponding bits on disks and stored on multiple parity disks
› not in use
Raid 3

- Striped set with dedicated parity (byte level parity)
 - Fragments are distributed on all but one disks
 - One dedicated disk stores a parity of corresponding fragments of the other disks

- Performance
 - improved read performance
 - write performance reduced by bottleneck parity disk

- Error correction or redundancy
 - one hard disks can fail without any data damage

- Capacity reduced by 1/n

http://en.wikipedia.org/wiki/RAID
Raid 4

- Striped set with dedicated parity (block level parity)
 - Fragments are distributed on all but one disks
 - One dedicated disk stores a parity of corresponding blocks of the other disks on I/O level
- Performance
 - improved read performance
 - write performance reduced by bottleneck parity disk
- Error correction or redundancy
 - one hard disks can fail without any data damage
- Hardly in use

http://en.wikipedia.org/wiki/RAID
Raid 5

- **Striped set with distributed parity**
 (interleave parity)
 - Fragments are distributed on all but one disks
 - Parity blocks are distributed over all disks

- **Performance**
 - improved read performance
 - improved write performance

- **Error correction or redundancy**
 - one hard disks can fail without any data damage

- **Capacity reduced by 1/n**
Raid 5

- Striped set with dual distributed parity
 - Fragments are distributed on all but two disks
 - Parity blocks are distributed over two of the disks
 - one uses XOR other alternative method
- Performance
 - improved read performance
 - improved write performance
- Error correction or redundancy
 - two hard disks can fail without any data damage
- Capacity reduced by 2/n
RAID 0+1

- Combination of RAID 1 over multiple RAID 0
- **Performance**
 - improved because of parallel write and read
- **Redundancy**
 - can deal with any single hard disk failure
 - can deal up to two hard disk failure
- **Capacity reduced by factor 2**

http://en.wikipedia.org/wiki/RAID
RAID 10

- Combination of RAID 0 over multiple RAID 1
- **Performance**
 - improved because of parallel write and read
- **Redundancy**
 - can deal with any single hard disk failure
 - can deal up to two hard disk failure
- **Capacity reduced by factor 2**

http://en.wikipedia.org/wiki/RAID
More RAIDs

More:
- RAIDn, RAID 00, RAID 03, RAID 05, RAID 1.5, RAID 55, RAID-Z, ...

Hot Swapping
- allows exchange of hard disks during operation

Hot Spare Disk
- unused reserve disk which can be activated if a hard disk fails

Drive Clone
- Preparation of a hard disk for future exchange indicated by S.M.A.R.T
Volume Manager

- **Volume manager**
 - aggregates physical hard disks into virtual hard disks
 - breaks down hard disks into smaller hard disks
 - Does not provide operating system, but enables it

- **Can provide**
 - resizing of volume groups by adding new physical volumes
 - resizing of logical volumes
 - snapshots
 - mirroring or striping, e.g. like RAID1
 - movement of logical volumes

From: Storage Networks Explained, Basics and Application of Fibre Channel SAN, NAS, iSCSI and InfiniBand, Troppens, Erkens, Müller, Wiley
Overview of Terms

- **Physical volume (PV)**
 - hard disks, RAID devices, SAN

- **Physical extents (PE)**
 - Some volume managers split PVs into same-sized physical extents

- **Logical extent (LE)**
 - physical extents may have copies of the same information
 - are addressed as logical extent

- **Volume group (VG)**
 - logical extents are grouped together into a volume group

- **Logical volume (LV)**
 - are a concatenation of volume groups
 - a raw block devices
 - where a file system can be created upon
Algorithms and Methods for Distributed Storage Networks

4: Volume Manager and RAID

Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08