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Overview

‣ Concept of Virtualization

‣ Storage Area Networks

• Principles

• Optimization

‣ Distributed File Systems

• Without virtualization, e.g. Network File Systems

• With virtualization, e.g. Google File System

‣ Distributed Wide Area Storage Networks

• Distributed Hash Tables

• Peer-to-Peer Storage
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Concept of Virtualization

‣ Principle
• A virtual storage constitutes handles all 

application accesses to the file system

• The virtual disk partitions files and 
stores blocks over several (physical) 
hard disks

• Control mechanisms allow redundancy 
and failure repair

‣ Control

• Virtualization server assigns data, e.g. 
blocks of files to hard disks (address 
space remapping)

• Controls replication and redundancy 
strategy

• Adds and removes storage devices
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Storage Virtualization

‣ Capabilities
• Replication

• Pooling

• Disk Management

‣ Advantages
• Data migration

• Higher availability

• Simple maintenance

• Scalability

‣ Disadvantages
• Un-installing is time consuming

• Compatibility and interoperability

• Complexity of the system

‣ Classic Implementation
• Host-based

- Logical Volume Management

- File Systems, e.g. NFS

• Storage devices based

- RAID

• Network based

- Storage Area Network

‣ New approaches
• Distributed Wide Area Storage 

Networks

• Distributed Hash Tables

• Peer-to-Peer Storage
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Storage Area Networks

‣ Virtual Block Devices

• without file system

• connects hard disks

‣ Advantages

• simpler storage administration

• more flexible

• servers can boot from the SAN

• effective disaster recovery

• allows storage replication

‣ Compatibility problems

• between hard disks and virtualization server
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SAN Networking

‣ Networking
• FCP (Fibre Channel Protocol)

- SCSI over Fibre Channel

• iSCSI (SCSI over TCP/IP)

• HyperSCSI (SCSI over Ethernet)

• ATA over Ethernet

• Fibre Channel over Ethernet

• iSCSI over InfiniBand

• FCP over IP
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SAN File Systems

‣ File system for concurrent read and write operations by 
multiple computers

• without conventional file locking

• concurrent direct access to blocks by servers

‣ Examples

• Veritas Cluster File System

• Xsan

• Global File System

• Oracle Cluster File System

• VMware VMFS

• IBM General Parallel File System
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Distributed File Systems
(without Virtualization)

‣ aka. Network File System

‣ Supports sharing of files, tapes, printers etc.

‣ Allows multiple client processes on multiple hosts to 
read and write the same files

• concurrency control or locking mechanisms necessary

‣ Examples

• Network File System (NFS)

• Server Message Block (SMB), Samba

• Apple Filing Protocol (AFP)

• Amazon Simple Storage Service (S3)
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Figure 2: Write Control and Data Flow

becomes unreachable or replies that it no longer holds
a lease.

3. The client pushes the data to all the replicas. A client
can do so in any order. Each chunkserver will store
the data in an internal LRU buffer cache until the
data is used or aged out. By decoupling the data flow
from the control flow, we can improve performance by
scheduling the expensive data flow based on the net-
work topology regardless of which chunkserver is the
primary. Section 3.2 discusses this further.

4. Once all the replicas have acknowledged receiving the
data, the client sends a write request to the primary.
The request identifies the data pushed earlier to all of
the replicas. The primary assigns consecutive serial
numbers to all the mutations it receives, possibly from
multiple clients, which provides the necessary serial-
ization. It applies the mutation to its own local state
in serial number order.

5. The primary forwards the write request to all sec-
ondary replicas. Each secondary replica applies mu-
tations in the same serial number order assigned by
the primary.

6. The secondaries all reply to the primary indicating
that they have completed the operation.

7. The primary replies to the client. Any errors encoun-
tered at any of the replicas are reported to the client.
In case of errors, the write may have succeeded at the
primary and an arbitrary subset of the secondary repli-
cas. (If it had failed at the primary, it would not
have been assigned a serial number and forwarded.)
The client request is considered to have failed, and the
modified region is left in an inconsistent state. Our
client code handles such errors by retrying the failed
mutation. It will make a few attempts at steps (3)
through (7) before falling back to a retry from the be-
ginning of the write.

If a write by the application is large or straddles a chunk
boundary, GFS client code breaks it down into multiple
write operations. They all follow the control flow described
above but may be interleaved with and overwritten by con-
current operations from other clients. Therefore, the shared

file region may end up containing fragments from different
clients, although the replicas will be identical because the in-
dividual operations are completed successfully in the same
order on all replicas. This leaves the file region in consistent
but undefined state as noted in Section 2.7.

3.2 Data Flow
We decouple the flow of data from the flow of control to

use the network efficiently. While control flows from the
client to the primary and then to all secondaries, data is
pushed linearly along a carefully picked chain of chunkservers
in a pipelined fashion. Our goals are to fully utilize each
machine’s network bandwidth, avoid network bottlenecks
and high-latency links, and minimize the latency to push
through all the data.

To fully utilize each machine’s network bandwidth, the
data is pushed linearly along a chain of chunkservers rather
than distributed in some other topology (e.g., tree). Thus,
each machine’s full outbound bandwidth is used to trans-
fer the data as fast as possible rather than divided among
multiple recipients.

To avoid network bottlenecks and high-latency links (e.g.,
inter-switch links are often both) as much as possible, each
machine forwards the data to the “closest” machine in the
network topology that has not received it. Suppose the
client is pushing data to chunkservers S1 through S4. It
sends the data to the closest chunkserver, say S1. S1 for-
wards it to the closest chunkserver S2 through S4 closest to
S1, say S2. Similarly, S2 forwards it to S3 or S4, whichever
is closer to S2, and so on. Our network topology is simple
enough that “distances” can be accurately estimated from
IP addresses.

Finally, we minimize latency by pipelining the data trans-
fer over TCP connections. Once a chunkserver receives some
data, it starts forwarding immediately. Pipelining is espe-
cially helpful to us because we use a switched network with
full-duplex links. Sending the data immediately does not
reduce the receive rate. Without network congestion, the
ideal elapsed time for transferring B bytes to R replicas is
B/T + RL where T is the network throughput and L is la-
tency to transfer bytes between two machines. Our network
links are typically 100 Mbps (T ), and L is far below 1 ms.
Therefore, 1 MB can ideally be distributed in about 80 ms.

3.3 Atomic Record Appends
GFS provides an atomic append operation called record

append. In a traditional write, the client specifies the off-
set at which data is to be written. Concurrent writes to
the same region are not serializable: the region may end up
containing data fragments from multiple clients. In a record
append, however, the client specifies only the data. GFS
appends it to the file at least once atomically (i.e., as one
continuous sequence of bytes) at an offset of GFS’s choosing
and returns that offset to the client. This is similar to writ-
ing to a file opened in O APPEND mode in Unix without the
race conditions when multiple writers do so concurrently.

Record append is heavily used by our distributed applica-
tions in which many clients on different machines append
to the same file concurrently. Clients would need addi-
tional complicated and expensive synchronization, for ex-
ample through a distributed lock manager, if they do so
with traditional writes. In our workloads, such files often
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Distributed File Systems with 
Virtualization

‣ Example: Google File System
‣ File system on top of other file 

systems with builtin virtualization

• System built from cheap standard 
components (with high failure rates)

• Few large files

• Only operations: read, create, append, 
delete

- concurrent appends and reads 
must be handled

• High bandwidth important

‣ Replication strategy

• chunk replication

• master replication
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Figure 1: GFS Architecture

and replication decisions using global knowledge. However,
we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches
this information for a limited time and interacts with the
chunkservers directly for many subsequent operations.

Let us explain the interactions for a simple read with refer-
ence to Figure 1. First, using the fixed chunk size, the client
translates the file name and byte offset specified by the ap-
plication into a chunk index within the file. Then, it sends
the master a request containing the file name and chunk
index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key.

The client then sends a request to one of the replicas,
most likely the closest one. The request specifies the chunk
handle and a byte range within that chunk. Further reads
of the same chunk require no more client-master interaction
until the cached information expires or the file is reopened.
In fact, the client typically asks for multiple chunks in the
same request and the master can also include the informa-
tion for chunks immediately following those requested. This
extra information sidesteps several future client-master in-
teractions at practically no extra cost.

2.5 Chunk Size
Chunk size is one of the key design parameters. We have

chosen 64 MB, which is much larger than typical file sys-
tem block sizes. Each chunk replica is stored as a plain
Linux file on a chunkserver and is extended only as needed.
Lazy space allocation avoids wasting space due to internal
fragmentation, perhaps the greatest objection against such
a large chunk size.

A large chunk size offers several important advantages.
First, it reduces clients’ need to interact with the master
because reads and writes on the same chunk require only
one initial request to the master for chunk location informa-
tion. The reduction is especially significant for our work-
loads because applications mostly read and write large files
sequentially. Even for small random reads, the client can
comfortably cache all the chunk location information for a
multi-TB working set. Second, since on a large chunk, a
client is more likely to perform many operations on a given
chunk, it can reduce network overhead by keeping a persis-

tent TCP connection to the chunkserver over an extended
period of time. Third, it reduces the size of the metadata
stored on the master. This allows us to keep the metadata
in memory, which in turn brings other advantages that we
will discuss in Section 2.6.1.

On the other hand, a large chunk size, even with lazy space
allocation, has its disadvantages. A small file consists of a
small number of chunks, perhaps just one. The chunkservers
storing those chunks may become hot spots if many clients
are accessing the same file. In practice, hot spots have not
been a major issue because our applications mostly read
large multi-chunk files sequentially.

However, hot spots did develop when GFS was first used
by a batch-queue system: an executable was written to GFS
as a single-chunk file and then started on hundreds of ma-
chines at the same time. The few chunkservers storing this
executable were overloaded by hundreds of simultaneous re-
quests. We fixed this problem by storing such executables
with a higher replication factor and by making the batch-
queue system stagger application start times. A potential
long-term solution is to allow clients to read data from other
clients in such situations.

2.6 Metadata
The master stores three major types of metadata: the file

and chunk namespaces, the mapping from files to chunks,
and the locations of each chunk’s replicas. All metadata is
kept in the master’s memory. The first two types (names-
paces and file-to-chunk mapping) are also kept persistent by
logging mutations to an operation log stored on the mas-
ter’s local disk and replicated on remote machines. Using
a log allows us to update the master state simply, reliably,
and without risking inconsistencies in the event of a master
crash. The master does not store chunk location informa-
tion persistently. Instead, it asks each chunkserver about its
chunks at master startup and whenever a chunkserver joins
the cluster.

2.6.1 In-Memory Data Structures
Since metadata is stored in memory, master operations are

fast. Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the background.
This periodic scanning is used to implement chunk garbage
collection, re-replication in the presence of chunkserver fail-
ures, and chunk migration to balance load and disk space

The Google File System 
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung 
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Distributed Wide Area Storage 
Networks

‣ Distributed Hash Tables

• Relieving hot spots in the Internet

• Caching strategies for web servers

‣ Peer-to-Peer Networks

• Distributed file lookup and download in Overlay 

networks

• Most (or the best) of them use: DHT
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WWW Load Balancing

‣ Web surfing:
• Web servers offer web pages

• Web clients request web pages

‣ Most of the time these requests are 
independent

‣ Requests use resources of the web 
servers
• bandwidth

• computation time

www.google.com

www.apple.de www.uni-freiburg.de

StefanChristian Arne
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Load
‣ Some web servers have always high 

load

• for permanent high loads servers must 

be sufficiently powerful

‣ Some suffer under high fluctuations

• e.g. special events:

- jpl.nasa.gov (Mars mission) 

- cnn.com (terrorist attack)

• Server extension for worst case not 

reasonable

• Serving the requests is desired

Monday Tuesday Wednesday

www.google.com
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Monday Tuesday Wednesday

A B A B A B

A B

Load Balancing in the WWW

‣ Fluctuations target 

some servers

‣ (Commercial) solution

• Service providers offer 

exchange servers an

• Many requests will be 

distributed among 

these servers

‣ But how?
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Web-Cache

Literature

‣ Leighton, Lewin, et al.  STOC 97

• Consistent Hashing and Random 
Trees: Distributed Caching Protocols 
for Relieving  Hot Spots on the World 
Wide Web

‣ Used by Akamai (founded 1997)
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Start Situation

‣ Without load balancing
‣ Advantage

• simple

‣ Disadvantage
• servers must be designed for worst 

case situations

Web-Server

Web-Clients

Web pages

request
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Web-Clients

Web-Server

Web-Cache
redirect

Site Caching

‣ The whole web-site is copied to 
different web caches

‣ Browsers request at web server

‣ Web server redirects requests to Web-
Cache

‣ Web-Cache delivers Web pages

‣ Advantage:
• good load balancing

‣ Disadvantage:
• bottleneck: redirect

• large overhead for complete web-site 
replication
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Proxy Caching

‣ Each web page is distributed to a few 
web-caches

‣ Only first request is sent to web server

‣ Links reference to pages in the web-
cache

‣ Then, web clients surfs in the web-
cache

‣ Advantage:
• No bottleneck

‣ Disadvantages:
• Load balancing only implicit

• High requirements for placements

Web-Client

Web-Server

Web-
Cache

Link

re
qu

es
t

redirect

1.2.
3.

4.
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Requirements
Balance
fair balancing of web pages

Dynamics
Efficient insert and delete of web-
cache-servers and files

Views
Web-Clients „see“ different 
set of web-caches

new X X

?
?
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Hash Functions

Buckets

Items

Example:

Set of Items:

Set of  Buckets:
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‣ Given:

• Items     , Number

• Caches (Buckets), Bucket set: 

• Views

‣ Ranged Hash-Funktion:

•  

• Prerequisite: for alle views 

Ranged Hash-Funktionen

Buckets

View

Items
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First Idea: Hash Function

‣ Algorithm:

• Choose Hash funktion, e.g. 

n: number of Cache servers

‣  Balance:
• very good

‣ Dynamics
• Insert or remove of a single cache 

server

• New hash functions and total re-
hashing

• Very expensive!!

0 1 2 3

5

9 4

2

3 6

3 i + 1 mod 4

0 1 2 3

5

9 4

2

3 6

2 i + 2 mod 3

X



Algorithms Theory
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer
22

Requirements of the
Ranged Hash Functions

‣ Monotony

• After adding or removing new caches (buckets) no pages 
(items) should be moved 

‣ Balance

• All caches should have the same load

‣ Spread (Verbreitung,Streuung)

• A page should be distributed to a bounded number of 
caches

‣ Load

• No Cache should not have substantially more load than the 
average
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Monotony

• After adding or removing new caches (buckets) no pages (items) 
should be moved

• Formally: For all

View 1:  

View 2:  

Pages

Pages

Caches

Caches
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Balance

• For every view V the is the fV(i) balanced
For a constant c and all                :

View 1:  

View 2:  

Pages

Pages

Caches

Caches
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Spread

• The spread σ(i) of a page i is the overall number of all 
necessary copies (over all views)

View 1:

View 2:

View 3:
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Load
• The load λ(b) of a cache b is the over-all number of all copies 

(over all views)

wher                := set of all pages assigned to bucket b 
     in View V

b1 b2

λ(b1) = 2

λ(b2) = 3

View 1:

View 2:

View 3:
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Distributed Hash Tables
Theorem

There exists a family of hash function
with the following properties

  Each function f∈F is monotone

  Balance: For every view

  Spread: For each page i 

   with probability 

  Load: For each cache b

   mit W‘keit

C  number of caches (Buckets) 
C/t minimum number of caches per View 
V/C = constant (#Views / #Caches)
I = C (# pages = # Caches)  
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The Design
‣ 2 Hash functions onto the reals [0,1]

	 	 maps k log C copies of cache b randomly to [0,1]

	 	 maps web page i randomly to the interval [0,1]

‣            :=  Cache             , which minimizes

0 1

Webseiten (Items):

Caches 
(Buckets):

View 2

View 1

0 1



‣            :=  Cache            which minimizes

For all                          :

Observe: blue interval in V2 and in V1 empty!
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Monotony

0 1

View 2

View 1

0 1



Balance: For all views

– Choose fixed view and a web page i
– Apply hash functions             and            .
– Under the assumption that the mapping is random

• every cache is chosen with the same probability
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2. Balance

Webseiten (Items):

Caches 
(Buckets):

View 0 1



Algorithms Theory
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer
31

3. Spread

σ(i) = number of all necessary copies (over all views)

0 1t/C 2t/C

Proof sketch: 
• Every view has a cache in an interval of length t/C (with high probability)
• The number of caches gives an upper bound for the spread

For every page i with prob.

ever user knows at least a fraction of 1/t 
over the caches

C  number of caches (Buckets) 
C/t minimum number of caches per View 
V/C = constant (#Views / #Caches)
I = C (# pages = # Caches)  



• Last (load): λ(b) =  Number of copies over all views

where                := wet of pages assigned to bucket b under view V

• For every cache be we observer
 
   with probability
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4. Load

0 1t/C 2t/C

Proof sketch: Consider intervals of length t/C
• With high probability a cache of every view falls into one of these intervals
• The number of items in the interval gives an upper bound for the load
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Summary

‣ Distributed Hash Table

• is a distributed data structure for virtualization

• with fair balance

• provides dynamic behavior

‣ Standard data structure for dynamic distributed 
storages
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