
2. System Models Page 1

University of Freiburg, Germany
Department of Computer Science

Distributed Systems

Chapter 2 System Models

Christian Schindelhauer

27. April 2012

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.1. Introduction Page 2

2.1: Introduction

Difficulties and threats to distributed systems

Widely varying modes of use
millions of accesses to a web-page

multimedia access versus e-mail

Wide range of system environments
heterogeneous hardware, operating systems and networks

Internal problems non-synchronized clocks
conflicting data updates

software/hardware failures

External threats
attacks on data integrity and security

denial of service

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.2. Architectural Models Page 3

2.2: Architectural Models

Description of the general structure of a DS

Placement of the components

interrelationship between components

Processes may be classified as

server processes

client processes

peer processes

Usually, variations of these classifications are used

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.2. Architectural Models Page 4

2.2.1: Software Layers

Platform

Lowest-level hardware and software layers

Provide services to the layer above

E.g. Intel x86/Windows, Intel x86/Solaris,

Intel x86/Linux

Middleware

Layer of software which masks the
heterogeneity

Useful building blocks for the construction
of software componetns

E.g. CORBA, Java RMI, web services,

Microsoft DCOM, ISU/ITU RM-ODP

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.2. Architectural Models Page 5

2.2.2: System Architectures

Client-Server

Prevalent architecture

Server process and client processes

E.g. Web servers, search engines using web crawlers

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.2. Architectural Models Page 6

2.2.2: System Architectures

Peer-to-Peer

All processes play similar roles

Interacting as peers (equals)

Large number of peer processes on separate computers

Individual servers hold only a small quantity

E.g. File-sharing, Skype

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.2. Architectural Models Page 7

Peer-to-Peer Architecture

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 N

Sharable
objects

Application

Peer 4

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.2. Architectural Models Page 8

2.2.2: System Architectures: Variations

Services provided by multiple servers (based on replicas)
e.g. Sun NIS (Network Information Service)

Proxy server and caches

Mobile code
e.g. applets

Mobile agent
a running program (code and data) that travels from computer to another one

Network computers
downloads OS from remote file server; also files are managed there

Thin clients
an graphical interface to a remote computer system,
e.g. terminal to mainframe computer

Mobile devices and spontaneous interoperation
e.g. smart phones interacting using GSM, UMTS, Bluetooth

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.2. Architectural Models Page 9

2.2.2: System Architectures: Design Requirements

Performance issues

Responsiveness
Throughput
Balancing computational loads

Quality of service

Reliability
Security
Performance

Dependability issues

Correctness
Security
Fault tolerance

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 10

2.3.1: Interaction Model

Performance of communication channels

Delay (latency)
includes time for transmission, accessing the network, time by the operation

systems

Bandwidth
number of bits that can be transmitted in a given time

Jitter
variation of the delay

Computer clocks

clock drift rate
relative amount that a computer clock differs from a perfect clock

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 11

2.3.1: Interaction Model

Synchronous Distributed Systems [Hadzilacos, Toueg, 1994]

the time to execute each step of a process has known lower and upper
bounds

each message transmitted over a channel is received within a known
bounded time

each process has a local clock whose drift rate has a known bound

Asynchronous Distributed System

No bounds on

process execution speeds

message transmission delays

clock drift rates

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 12

2.3.1: Interaction Model
Event ordering

1 X sends a message with the subject: Meeting

2 Y and Z reply, send a message with subject: Re: Meeting

User A’s inbox:

Item From Subject
23 Z Re: Meeting
24 X Meeting
25 Y Re: Meeting

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive
m2

m1

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 13

2.3.2: Failure Model

Process ommission failures

e.g. crash: can only detected by timeouts
e.g. fail-stop: detected crash

Arbitrary (Byzantine) failures

worst possible failure: anything can happen
omits steps, takes unintended processing steps, returns wrong values,
corrupted messages . . .
are rare
check sums can detect corrupted messages
message sequence number can detect omitted data

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 14

2.3.2: Failure Model

Timing failures

internal clock too late or too early
process is too slow or to fast
messages take longer than wanted

Masking failures

A service masks a failure by hiding it or by converting it into a more
acceptable type of failure

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 15

2.3.2: Failure Model

Communication omission failures

dropping messages: lost messages on the communication channel
send-omission failure: between send process and outgoing buffer
receive-omission failure: between incoming buffer and receive process
e.g. fail-stop: detected crash

Reliability of one-to-one communication

validity: any message in the outgoing buffer is eventually delivered o the
incoming message buffer
integrity: the message received is identical to the one sent, no messages are
delivered twice

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 16

2.3.2: Failure Model

Defeated army problem

Two confederated armies on two hills separated by the enemy army in the
valley

Dark Blue and Blue communicate via messengers

Problem: In the asynchronous model Dark Blue cannot distinguish whether

Blue has been attacked and defeated by Red or

the messenger with the
”
everything is fine“ message from Blue is late.

.

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 17

2.3.2: Failure Model

Agreement Problem

Two confederated armies on two hills separated by the enemy army in the
valley

Dark Blue and Blue communicate via messengers.

Red can delete any message (by killing the messenger)

Dark Blue and Blue want to agree on whether to attack Red the next
morning or not

Problem:

Red can prevent Dark Blue and Blue from an agreement by erasing
the right messages.

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 18

2.3.2: Failure Model:Agreement Problem

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 19

2.3.2: Failure Model

Omission and Arbitrary Failures
Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes
may detect this state.

Crash Process Process halts and remains halted. Other processes
may not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer
never drives at the other end’s incoming message
buffer

Send-omission Process A process completes a send, but the message is not
put in its outgoing message buffer.

Receive-
omission

Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

exhibits arbitrary behavior: sends/transmits arbitrary
message at arbitrary times, omissions, process may
stop or may take an incorrect step

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 20

2.3.2: Failure Model

Timing Failures

Class of failure Affects Description

Clock Process Process’s local clock exceeds the bounds on
its rate of drift from real time

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than
the stated bound.

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 21

2.3.3: Security Model

The security of a distributed system

can be achieved by securing the processes and the interaction channels and by
protecting the objects they encapsulate against unauthorized access.

Protecting objects
access rights
an authority (user or process), called principal, grants the access to the
objects

securing processes and interactions
messages are exposed to attacks
processes expose their interfaces
enable invocations

Network

invocation

result
Client

Server

Principal (user) Principal (server)

ObjectAccess rights

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, KindbergChristian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 22

2.3.3: Security Model: The enemy

threats to processes
e.g. IP lacks the reliable knowledge of the source of messages

Servers, e.g. mail-server delivers e-mail to attacker
Clients, e.g. fake GSM radio station captures secret phone calls

threats to communication channels

enemy copies, alters, injects messages
enemy saves copies of messages and replays them later
such attacks can be defeated by the use of secure channels

denial of service

Communication channel!

Copy of !m!

Process !p! Process !q!m!

The enemy!
m’!

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 23

2.3.3: Security Model: Defeating Security Threats

Cryptography: the science of keeping messages secure

symmetric encryption
public-key encryption
challenge-response protocols

Authentication

shared secrets
public-key encryption

Secure channels

process know reliably the identity of the principle
ensure privacy and integrity of the data
include physical or logical time stamps

Other threats: denial of service and mobile code

Christian Schindelhauer Distributed Systems 27. April 2012

2. System Models 2.3. Fundamental Models Page 24

End of Section 2

Christian Schindelhauer Distributed Systems 27. April 2012

	System Models
	Introduction
	Architectural Models
	Fundamental Models

