
8. Transaction Model Seite 1

8: Transaction Model

Page Model

All operations on data will be eventually mapped into read and write operations
on pages.

To study the concurrent execution of transactions it is sufficient to inspect the
interleavings of the resulting page operations.

Independently whether a page resides in cache memory or resides on disk, read
and write are considered as indivisible.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



8. Transaction Model Seite 2

Parallelism as prerequisite for distributed execution

A transaction T is a partial order <1 of actions in OP, T = (OP, <), where OP is a
finite set of T ’s actions RX and WX , where X is a data item.

Moreover, < ⊆ OP × OP is a partial order on OP which fulfills the following
properties:

Each data item is read and written by T at most once.

If p is a read action and q is a write actions of T and both access the same data item,
then p < q.

Complete transaction

We call a transaction complete, if its first action is begin b and its last action either is
commit c or abort a.

1A binary relation is a partial order , if it is reflexive, antisymmetric and transitive.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



8. Transaction Model Seite 3

A parallel debit/credit transaction. b: BEGIN; c: COMMIT.

When transactions are depicted as directed graphs, we omit transitive edges.

Two parallel debit/credit transactions, each prepared for parallel execution.

=⇒ Definition of a schedule? Definition of serializability?

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



8. Transaction Model Seite 4

Two parallel debit/credit transactions, each prepared for parallel execution.

Transaction T1 Transaction T2

Locally observable schedules of the two transactions when executed in parallel by CPU PA and
CPU PB.

(i)
PA : R1A W1A R2A W2A
PB : R1B W1B R2B W2B

(ii)
PA : R1A W1A R2A W2A
PB : R2B W2B R1B W1B

On each CPU in both cases the local schedules are serializable - however, globally, in the
second case the transactions are not executed in a serializable manner!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



8. Transaction Model Seite 5

Histories and schedules

Let T = {T1, . . . ,Tn} be a (finite) set of complete transactions, where for each Ti we
have Ti = (OPi , <i ).

A history of T is a pair S = (OPS , <S), where

OPS = ∪n
i=1OPi and <S a partial order on OPS such that <S⊇ ∪n

i=1 <i .

Let p, q ∈ OPS , where p and q belong to distinct transactions, however access
the same data object. If p or q is a write action, then either p <S q or q <S p;
we say, p and q are in conflict; if p <S q and p and q are in conflict, we write
(p, q) ∈ conf (S).

A schedule of T is a prefix of a history.2

Conflict graph

The conflict graph of a schedule S is given as G(S) = (V ,E), where V is the set of
transactions in S and the set of edges E is given by the conflicts in S : Ti → Tj ∈ E , iff
there are conflicting actions p ∈ OPi , q ∈ OPj and p <S q.

2A partial order L′ = (A′, <′) is a prefix of a partial order L = (A, <), if A′ ⊆ A, <′⊆<,
for all a, b ∈ A′: a <′ b if a < b, and for all p ∈ A, q ∈ A′: p < q ⇒ p <′ q.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



8. Transaction Model Seite 6

A schedule/history of the two parallel debit/credit transactions.

The schedule is not serializable
as its conflict graph is cyclic.

Serializability

A schedule S = (OPS , <S ) is serial, if for any two transactions T1,T2 appearing in S ,
<S orders all actions of T1 before all actions of T2, or vice versa.

A schedule is called (conflict-)serializable,3 if there exists a (conflict-)equivalent serial
schedule over the same set of transactions.

A schedule S = (OPS , <S ) is serializable, iff its conflict graph is acyclic.

3We consider only conflict-serializability and therefore talk about serializability in the
sequel, for short.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen


	Transaction Model

