
10. Reliability Seite 1

10. Reliability

Crash and crash recovery

By crash all kinds of failures are denoted that bring down a server and cause all
data in volatile memory to be lost (soft crash), but leave all data on stable
secondary storage intact, i.e. not a (hard crash).

A crash recovery algorithm restarts the server and brings its permanent data back
to its most recent, consistent state, thereby ensuring atomicity and durability of
transactions.

All updates of committed transactions are included: redo recovery,
No updates of uncommitted or aborted transactions are included: undo
recovery.

This functionality is called failure resilience, or fault tolerance, respectively
reliability.

Today, a soft crash typically is produced by a so called Heisenbug1, an error which cannot

easily be eliminated by more extensive software testing because it appears in a

”
nondeterministic“ manner often related to concurrent threads or high system load.

1A notion coined by Jim Gray.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability Seite 2

10. Reliability

Crash and crash recovery

By crash all kinds of failures are denoted that bring down a server and cause all
data in volatile memory to be lost (soft crash), but leave all data on stable
secondary storage intact, i.e. not a (hard crash).

A crash recovery algorithm restarts the server and brings its permanent data back
to its most recent, consistent state, thereby ensuring atomicity and durability of
transactions.

All updates of committed transactions are included: redo recovery,
No updates of uncommitted or aborted transactions are included: undo
recovery.

This functionality is called failure resilience, or fault tolerance, respectively
reliability.

Today, a soft crash typically is produced by a so called Heisenbug1, an error which cannot

easily be eliminated by more extensive software testing because it appears in a

”
nondeterministic“ manner often related to concurrent threads or high system load.

1A notion coined by Jim Gray.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability Seite 3

10. Reliability

Crash and crash recovery

By crash all kinds of failures are denoted that bring down a server and cause all
data in volatile memory to be lost (soft crash), but leave all data on stable
secondary storage intact, i.e. not a (hard crash).

A crash recovery algorithm restarts the server and brings its permanent data back
to its most recent, consistent state, thereby ensuring atomicity and durability of
transactions.

All updates of committed transactions are included: redo recovery,
No updates of uncommitted or aborted transactions are included: undo
recovery.

This functionality is called failure resilience, or fault tolerance, respectively
reliability.

Today, a soft crash typically is produced by a so called Heisenbug1, an error which cannot

easily be eliminated by more extensive software testing because it appears in a

”
nondeterministic“ manner often related to concurrent threads or high system load.

1A notion coined by Jim Gray.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability Seite 4

During crash recovery after a system failure, a server and its data are unavailable to

clients. Goal: minimize recovery time

Recovery performance and system availability

MTBF: mean time between failure

MTTR: mean time to repair

Availability: probability for a server to be ready to serve:

MTBF

MTBF + MTTR

Examples

Server fails once a month and takes 2 hours to recover: availability of 99.7%,
downtime of 26 h a year.

Server fails once every 48 h and takes 30 sec to recover: availability of 99.98%,
downtime of 105 min a year.

=⇒ Fast recovery is the key to high availability!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability Seite 5

During crash recovery after a system failure, a server and its data are unavailable to

clients. Goal: minimize recovery time

Recovery performance and system availability

MTBF: mean time between failure

MTTR: mean time to repair

Availability: probability for a server to be ready to serve:

MTBF

MTBF + MTTR

Examples

Server fails once a month and takes 2 hours to recover: availability of 99.7%,
downtime of 26 h a year.

Server fails once every 48 h and takes 30 sec to recover: availability of 99.98%,
downtime of 105 min a year.

=⇒ Fast recovery is the key to high availability!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability Seite 6

During crash recovery after a system failure, a server and its data are unavailable to

clients. Goal: minimize recovery time

Recovery performance and system availability

MTBF: mean time between failure

MTTR: mean time to repair

Availability: probability for a server to be ready to serve:

MTBF

MTBF + MTTR

Examples

Server fails once a month and takes 2 hours to recover: availability of 99.7%,
downtime of 26 h a year.

Server fails once every 48 h and takes 30 sec to recover: availability of 99.98%,
downtime of 105 min a year.

=⇒ Fast recovery is the key to high availability!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability Seite 7

Outlook2

Local recovery designed for each site: advanced crash recovery algorithms,

Global recovery designed for distributed executions: commit coordination.

2additional literature: Concurrency Control and Recovery in Database Systems. Bernstein,
Hadzilacos and Goodman, 1987 Addison Wesley. Download:
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 8

10.1. Commit coordination

The coordination problem during the commit-phase.

Given a computation defined by a set of subtransactions each running at a seperate
server. How can we ensure that either all subtransactions commit to the final result, or
none of them do (atomicity)? To reach a unique decision among the subtransactions, a
coordinator process is initiated running at one of the involved servers.

A subtransaction may be aborted even after having reached the end because of
some faulty other subtransaction.

Therefore, during its commit-phase each subtransaction must figure out whether
it and all the others will finish their commit-phase successfully.

If this is not possible, all subtransaction have to be aborted.

Reaching a global commit must be achieved by passing messages.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 9

10.1. Commit coordination

The coordination problem during the commit-phase.

Given a computation defined by a set of subtransactions each running at a seperate
server. How can we ensure that either all subtransactions commit to the final result, or
none of them do (atomicity)? To reach a unique decision among the subtransactions, a
coordinator process is initiated running at one of the involved servers.

A subtransaction may be aborted even after having reached the end because of
some faulty other subtransaction.

Therefore, during its commit-phase each subtransaction must figure out whether
it and all the others will finish their commit-phase successfully.

If this is not possible, all subtransaction have to be aborted.

Reaching a global commit must be achieved by passing messages.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 10

10.1. Commit coordination

The coordination problem during the commit-phase.

Given a computation defined by a set of subtransactions each running at a seperate
server. How can we ensure that either all subtransactions commit to the final result, or
none of them do (atomicity)? To reach a unique decision among the subtransactions, a
coordinator process is initiated running at one of the involved servers.

A subtransaction may be aborted even after having reached the end because of
some faulty other subtransaction.

Therefore, during its commit-phase each subtransaction must figure out whether
it and all the others will finish their commit-phase successfully.

If this is not possible, all subtransaction have to be aborted.

Reaching a global commit must be achieved by passing messages.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 11

2-Phase-Commit Protocol

how it works

The client who inititated the computation acts as coordinator; processes required
to commit are the participants.

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
global-commit to all participants, otherwise it sends global-abort.

Phase 2b: Each participant waits for global-commit or global-abort and reacts
accordingly.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 12

2-Phase-Commit Protocol

how it works

The client who inititated the computation acts as coordinator; processes required
to commit are the participants.

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
global-commit to all participants, otherwise it sends global-abort.

Phase 2b: Each participant waits for global-commit or global-abort and reacts
accordingly.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 13

2-Phase-Commit Protocol

how it works

The client who inititated the computation acts as coordinator; processes required
to commit are the participants.

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
global-commit to all participants, otherwise it sends global-abort.

Phase 2b: Each participant waits for global-commit or global-abort and reacts
accordingly.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 14

Notation: message received
message sent

msg∗: message sent-to/received-from all

State transitions during 2PC.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 15

Distributed Transaction Log: DT log at each site

DT log maintenance

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 16

Distributed Transaction Log: DT log at each site

DT log maintenance

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 17

Distributed Transaction Log: DT log at each site

DT log maintenance

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 18

Distributed Transaction Log: DT log at each site

DT log maintenance

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 19

Distributed Transaction Log: DT log at each site

DT log maintenance

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 20

Problems which may occur during 2PC: processes being blocked

Participant is blocked in the init-state.

A participant waits for a vote-request-message. As no decision for a global commit has
been taken, the participant can abort without any harm.

Cordinator is blocked in the wait-state.

The coordinator waits for vote-abort and vote-commit messages. As no decision for a
global commit has been taken so far, the coordinator can send global-abort to all
participants having sent vote-commit so far.

Participant is blocked in the ready-state.

Participant, say P, has sent vote-commit and is waiting for the coordinators reply. P
does not know what to do, it cannot commit, because the coordinator did not respont, it
cannot abort, because it voted for commit.

Participant P may contact another participant Q to clarify the situation by executing the
cooperative termination protocol:

State of Q Action by P,Q
COMMIT P: Make transition to COMMIT
ABORT P: Make transition to ABORT
INIT P,Q: Make transition to ABORT
READY P: Contact another participant

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 21

Problems which may occur during 2PC: processes being blocked

Participant is blocked in the init-state.

A participant waits for a vote-request-message. As no decision for a global commit has
been taken, the participant can abort without any harm.

Cordinator is blocked in the wait-state.

The coordinator waits for vote-abort and vote-commit messages. As no decision for a
global commit has been taken so far, the coordinator can send global-abort to all
participants having sent vote-commit so far.

Participant is blocked in the ready-state.

Participant, say P, has sent vote-commit and is waiting for the coordinators reply. P
does not know what to do, it cannot commit, because the coordinator did not respont, it
cannot abort, because it voted for commit.

Participant P may contact another participant Q to clarify the situation by executing the
cooperative termination protocol:

State of Q Action by P,Q
COMMIT P: Make transition to COMMIT
ABORT P: Make transition to ABORT
INIT P,Q: Make transition to ABORT
READY P: Contact another participant

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 22

Problems which may occur during 2PC: processes being blocked

Participant is blocked in the init-state.

A participant waits for a vote-request-message. As no decision for a global commit has
been taken, the participant can abort without any harm.

Cordinator is blocked in the wait-state.

The coordinator waits for vote-abort and vote-commit messages. As no decision for a
global commit has been taken so far, the coordinator can send global-abort to all
participants having sent vote-commit so far.

Participant is blocked in the ready-state.

Participant, say P, has sent vote-commit and is waiting for the coordinators reply. P
does not know what to do, it cannot commit, because the coordinator did not respont, it
cannot abort, because it voted for commit.

Participant P may contact another participant Q to clarify the situation by executing the
cooperative termination protocol:

State of Q Action by P,Q
COMMIT P: Make transition to COMMIT
ABORT P: Make transition to ABORT
INIT P,Q: Make transition to ABORT
READY P: Contact another participant

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 23

Problems which may occur during 2PC: processes being blocked

Participant is blocked in the init-state.

A participant waits for a vote-request-message. As no decision for a global commit has
been taken, the participant can abort without any harm.

Cordinator is blocked in the wait-state.

The coordinator waits for vote-abort and vote-commit messages. As no decision for a
global commit has been taken so far, the coordinator can send global-abort to all
participants having sent vote-commit so far.

Participant is blocked in the ready-state.

Participant, say P, has sent vote-commit and is waiting for the coordinators reply. P
does not know what to do, it cannot commit, because the coordinator did not respont, it
cannot abort, because it voted for commit.

Participant P may contact another participant Q to clarify the situation by executing the
cooperative termination protocol:

State of Q Action by P,Q
COMMIT P: Make transition to COMMIT
ABORT P: Make transition to ABORT
INIT P,Q: Make transition to ABORT
READY P: Contact another participant

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 24

Site S recovers from a failure

If the DT log contains a start-2PC record, then S was the host of the
coordinator. If it also contains a commit or abort record, then the coordinator
had decided before the failure and it can resend its decision. If neither record is
found, the coordinator can now unilaterally decide Abort by inserting an abort
record in the DT log.

If the DT log doesn’t contain a start-2PC record, then S was the host of a
participant. There are three cases to consider:

(1) The DT log contains a commit or abort record. Then the participant had
reached its decision before the failure.

(2) The DT log does not contain a vote-commit record. Then either the
participant failed before voting or voted vote-abort (but did not write an
abort record before failing). It can therefore unilaterally abort by inserting an
abort record in the DT log.

(3) The DT log contains a vote-commit but no commit or abort record. Then
the participant failed while in its uncertainty period. It can try to reach a
decision using the cooperative termination protocol.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 25

Site S recovers from a failure

If the DT log contains a start-2PC record, then S was the host of the
coordinator. If it also contains a commit or abort record, then the coordinator
had decided before the failure and it can resend its decision. If neither record is
found, the coordinator can now unilaterally decide Abort by inserting an abort
record in the DT log.

If the DT log doesn’t contain a start-2PC record, then S was the host of a
participant. There are three cases to consider:

(1) The DT log contains a commit or abort record. Then the participant had
reached its decision before the failure.

(2) The DT log does not contain a vote-commit record. Then either the
participant failed before voting or voted vote-abort (but did not write an
abort record before failing). It can therefore unilaterally abort by inserting an
abort record in the DT log.

(3) The DT log contains a vote-commit but no commit or abort record. Then
the participant failed while in its uncertainty period. It can try to reach a
decision using the cooperative termination protocol.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 26

Site S recovers from a failure

If the DT log contains a start-2PC record, then S was the host of the
coordinator. If it also contains a commit or abort record, then the coordinator
had decided before the failure and it can resend its decision. If neither record is
found, the coordinator can now unilaterally decide Abort by inserting an abort
record in the DT log.

If the DT log doesn’t contain a start-2PC record, then S was the host of a
participant. There are three cases to consider:

(1) The DT log contains a commit or abort record. Then the participant had
reached its decision before the failure.

(2) The DT log does not contain a vote-commit record. Then either the
participant failed before voting or voted vote-abort (but did not write an
abort record before failing). It can therefore unilaterally abort by inserting an
abort record in the DT log.

(3) The DT log contains a vote-commit but no commit or abort record. Then
the participant failed while in its uncertainty period. It can try to reach a
decision using the cooperative termination protocol.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 27

Site S recovers from a failure

If the DT log contains a start-2PC record, then S was the host of the
coordinator. If it also contains a commit or abort record, then the coordinator
had decided before the failure and it can resend its decision. If neither record is
found, the coordinator can now unilaterally decide Abort by inserting an abort
record in the DT log.

If the DT log doesn’t contain a start-2PC record, then S was the host of a
participant. There are three cases to consider:

(1) The DT log contains a commit or abort record. Then the participant had
reached its decision before the failure.

(2) The DT log does not contain a vote-commit record. Then either the
participant failed before voting or voted vote-abort (but did not write an
abort record before failing). It can therefore unilaterally abort by inserting an
abort record in the DT log.

(3) The DT log contains a vote-commit but no commit or abort record. Then
the participant failed while in its uncertainty period. It can try to reach a
decision using the cooperative termination protocol.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 28

DT log garbage collection

A site cannot delete log records of a transaction T from its DT log before its
recovery manager has processed Commit or Abort.

The coordinator should not delete the records of transaction T from its DT log
until it has received messages indicating that Commit or Abort has been
processed at all other sites where T executed. To this end participants may send
a final ACK-message when moving in their commit-state.

In the literature there are many optimizations described for 2PC - have a look
into the Weikum-Vossen book, for example!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 29

DT log garbage collection

A site cannot delete log records of a transaction T from its DT log before its
recovery manager has processed Commit or Abort.

The coordinator should not delete the records of transaction T from its DT log
until it has received messages indicating that Commit or Abort has been
processed at all other sites where T executed. To this end participants may send
a final ACK-message when moving in their commit-state.

In the literature there are many optimizations described for 2PC - have a look
into the Weikum-Vossen book, for example!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 30

2-Phase-Commit Variants

decentralized 2PC

Phase 1: Coordinator sends, depending on its vote, vote-commit or vote-abort to
all participants.

Phase 2a: When a participant receives vote-abort from the coordinator, it simply
aborts. Otherwise it has received vote-commit and returns either commit or abort
to coordinator and to all other participants. If it sends abort, it aborts its local
computation.

Phase 2b: After having received all votes, the coordinator and all participants
have all votes available; if all are commit, they commit and otherwise abort.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 31

2-Phase-Commit Variants

decentralized 2PC

Phase 1: Coordinator sends, depending on its vote, vote-commit or vote-abort to
all participants.

Phase 2a: When a participant receives vote-abort from the coordinator, it simply
aborts. Otherwise it has received vote-commit and returns either commit or abort
to coordinator and to all other participants. If it sends abort, it aborts its local
computation.

Phase 2b: After having received all votes, the coordinator and all participants
have all votes available; if all are commit, they commit and otherwise abort.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 32

Notation: message received
message sent

msg∗: message sent-to/received-from all

State transitions during decentralized 2PC.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 33

linear 2PC

All processes are linearly ordered, w.l.o.g. P0,P1,P2, . . . ,Pn, where P0 is the coordinator.
Communication is possible between neighbors.

(S1) When the protocol starts, P0 sends message vote-request to its right neighbor.

(S2) If process Pi , 1 ≤ i < n, receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends vote-request to its right neighbor.
(ii) otherwise, it sends abort to its left and right neighbors and aborts.

(2) If message is abort, then it sends abort to its right neighbor and aborts.

(S3) If process Pi , 1 ≤ i < n, receives a message from its right neighbor:

(1) If message is commit, then it sends commit to its left neighbor and commits.
(2) If message is abort, then it sends abort to its left neighbor and aborts.

(S4) If process Pn receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends commit to its left neighbor and commit.
(ii) if its own vote is abort, it sends abort to its left neighbor and aborts.

(2) If message is abort, then it aborts.

(S5) If process P0 receives message commit from its right neighbor, it commits; if it receives
message abort, it aborts.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 34

linear 2PC

All processes are linearly ordered, w.l.o.g. P0,P1,P2, . . . ,Pn, where P0 is the coordinator.
Communication is possible between neighbors.

(S1) When the protocol starts, P0 sends message vote-request to its right neighbor.

(S2) If process Pi , 1 ≤ i < n, receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends vote-request to its right neighbor.
(ii) otherwise, it sends abort to its left and right neighbors and aborts.

(2) If message is abort, then it sends abort to its right neighbor and aborts.

(S3) If process Pi , 1 ≤ i < n, receives a message from its right neighbor:

(1) If message is commit, then it sends commit to its left neighbor and commits.
(2) If message is abort, then it sends abort to its left neighbor and aborts.

(S4) If process Pn receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends commit to its left neighbor and commit.
(ii) if its own vote is abort, it sends abort to its left neighbor and aborts.

(2) If message is abort, then it aborts.

(S5) If process P0 receives message commit from its right neighbor, it commits; if it receives
message abort, it aborts.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 35

linear 2PC

All processes are linearly ordered, w.l.o.g. P0,P1,P2, . . . ,Pn, where P0 is the coordinator.
Communication is possible between neighbors.

(S1) When the protocol starts, P0 sends message vote-request to its right neighbor.

(S2) If process Pi , 1 ≤ i < n, receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends vote-request to its right neighbor.
(ii) otherwise, it sends abort to its left and right neighbors and aborts.

(2) If message is abort, then it sends abort to its right neighbor and aborts.

(S3) If process Pi , 1 ≤ i < n, receives a message from its right neighbor:

(1) If message is commit, then it sends commit to its left neighbor and commits.
(2) If message is abort, then it sends abort to its left neighbor and aborts.

(S4) If process Pn receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends commit to its left neighbor and commit.
(ii) if its own vote is abort, it sends abort to its left neighbor and aborts.

(2) If message is abort, then it aborts.

(S5) If process P0 receives message commit from its right neighbor, it commits; if it receives
message abort, it aborts.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 36

linear 2PC

All processes are linearly ordered, w.l.o.g. P0,P1,P2, . . . ,Pn, where P0 is the coordinator.
Communication is possible between neighbors.

(S1) When the protocol starts, P0 sends message vote-request to its right neighbor.

(S2) If process Pi , 1 ≤ i < n, receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends vote-request to its right neighbor.
(ii) otherwise, it sends abort to its left and right neighbors and aborts.

(2) If message is abort, then it sends abort to its right neighbor and aborts.

(S3) If process Pi , 1 ≤ i < n, receives a message from its right neighbor:

(1) If message is commit, then it sends commit to its left neighbor and commits.
(2) If message is abort, then it sends abort to its left neighbor and aborts.

(S4) If process Pn receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends commit to its left neighbor and commit.
(ii) if its own vote is abort, it sends abort to its left neighbor and aborts.

(2) If message is abort, then it aborts.

(S5) If process P0 receives message commit from its right neighbor, it commits; if it receives
message abort, it aborts.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 37

linear 2PC

All processes are linearly ordered, w.l.o.g. P0,P1,P2, . . . ,Pn, where P0 is the coordinator.
Communication is possible between neighbors.

(S1) When the protocol starts, P0 sends message vote-request to its right neighbor.

(S2) If process Pi , 1 ≤ i < n, receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends vote-request to its right neighbor.
(ii) otherwise, it sends abort to its left and right neighbors and aborts.

(2) If message is abort, then it sends abort to its right neighbor and aborts.

(S3) If process Pi , 1 ≤ i < n, receives a message from its right neighbor:

(1) If message is commit, then it sends commit to its left neighbor and commits.
(2) If message is abort, then it sends abort to its left neighbor and aborts.

(S4) If process Pn receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends commit to its left neighbor and commit.
(ii) if its own vote is abort, it sends abort to its left neighbor and aborts.

(2) If message is abort, then it aborts.

(S5) If process P0 receives message commit from its right neighbor, it commits; if it receives
message abort, it aborts.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 38

Notation: message received
message sent

State transitions during linear 2PC.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 39

Comparison

Message Complexity: How many messages are exchanged to reach a decision?
Time Complexity: How long does it take to reach the decision? As several messages
can be send in parallel, the number of message exchange rounds is counted.

Number of messages Rounds of communication

centralized 2PC 3n 3
decentralized 2PC
linear 2PC

n participants.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 40

Comparison

Message Complexity: How many messages are exchanged to reach a decision?
Time Complexity: How long does it take to reach the decision? As several messages
can be send in parallel, the number of message exchange rounds is counted.

Number of messages Rounds of communication

centralized 2PC 3n 3
decentralized 2PC
linear 2PC

n participants.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 41

Under which assumptions does 2PC work correctly, i.e. will not block?

Possible failures

Assumption: A site is either working correctly (is operational) or not working at all (is
down).3

partial site failure:

Some sites are operational, some sites are down.

total site failure:

All sites are down.

communication failure:

Some site A is not able to communicate with some site B, even though none of
them is down. This may be due to broken communication links or site failures.

2PC may be blocking even in case of only partial failures. =⇒ 3PC

3Also called fail-stop, because sites fail only by stopping, i.e. don’t work incorrectly.
Contrast this with Byzantine failures!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 42

Under which assumptions does 2PC work correctly, i.e. will not block?

Possible failures

Assumption: A site is either working correctly (is operational) or not working at all (is
down).3

partial site failure:

Some sites are operational, some sites are down.

total site failure:

All sites are down.

communication failure:

Some site A is not able to communicate with some site B, even though none of
them is down. This may be due to broken communication links or site failures.

2PC may be blocking even in case of only partial failures. =⇒ 3PC

3Also called fail-stop, because sites fail only by stopping, i.e. don’t work incorrectly.
Contrast this with Byzantine failures!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 43

Under which assumptions does 2PC work correctly, i.e. will not block?

Possible failures

Assumption: A site is either working correctly (is operational) or not working at all (is
down).3

partial site failure:

Some sites are operational, some sites are down.

total site failure:

All sites are down.

communication failure:

Some site A is not able to communicate with some site B, even though none of
them is down. This may be due to broken communication links or site failures.

2PC may be blocking even in case of only partial failures. =⇒ 3PC

3Also called fail-stop, because sites fail only by stopping, i.e. don’t work incorrectly.
Contrast this with Byzantine failures!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 44

Under which assumptions does 2PC work correctly, i.e. will not block?

Possible failures

Assumption: A site is either working correctly (is operational) or not working at all (is
down).3

partial site failure:

Some sites are operational, some sites are down.

total site failure:

All sites are down.

communication failure:

Some site A is not able to communicate with some site B, even though none of
them is down. This may be due to broken communication links or site failures.

2PC may be blocking even in case of only partial failures. =⇒ 3PC

3Also called fail-stop, because sites fail only by stopping, i.e. don’t work incorrectly.
Contrast this with Byzantine failures!

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 45

3-Phase-Commit Protocol

In contrast to 2PC, 3PC tolerates partial failures by guaranteeing the property NB

The period between the moment a process votes Yes for commit and the moment
it has received sufficient information to know the decision is called uncertainty
period. During its uncertainty period a process is called uncertain.

NB: If any operational process is uncertain, then no process (whether operational or
failed) can have decided to commit.

As a consequence, if the operational sites discover, that they all are uncertain,
they can decide to abort, as the other failed process cannot have decided commit
before.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 46

3-Phase-Commit Protocol

In contrast to 2PC, 3PC tolerates partial failures by guaranteeing the property NB

The period between the moment a process votes Yes for commit and the moment
it has received sufficient information to know the decision is called uncertainty
period. During its uncertainty period a process is called uncertain.

NB: If any operational process is uncertain, then no process (whether operational or
failed) can have decided to commit.

As a consequence, if the operational sites discover, that they all are uncertain,
they can decide to abort, as the other failed process cannot have decided commit
before.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 47

3-Phase-Commit Protocol

In contrast to 2PC, 3PC tolerates partial failures by guaranteeing the property NB

The period between the moment a process votes Yes for commit and the moment
it has received sufficient information to know the decision is called uncertainty
period. During its uncertainty period a process is called uncertain.

NB: If any operational process is uncertain, then no process (whether operational or
failed) can have decided to commit.

As a consequence, if the operational sites discover, that they all are uncertain,
they can decide to abort, as the other failed process cannot have decided commit
before.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 48

3-phase commit (3PC) protocol

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
prepare-commit to all participants, otherwise it sends global-abort, and halts.

Phase 2b: Each participant that voted vote-commit waits for prepare-commit, or
waits for global-abort after which it halts. If prepare-commit is received, the
process replies ready-commit and therefore the coordinator knows that this
process is no longer uncertain.

Phase 3a: (Prepare to commit) Coordinator waits until all participants have sent
ready-commit, and then sends global-commit to all.

Phase 3b: (Prepare to commit) Participant waits for global-commit and then
commits. It knows that no other process is uncertain and thus commits without
violating NB.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 49

3-phase commit (3PC) protocol

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
prepare-commit to all participants, otherwise it sends global-abort, and halts.

Phase 2b: Each participant that voted vote-commit waits for prepare-commit, or
waits for global-abort after which it halts. If prepare-commit is received, the
process replies ready-commit and therefore the coordinator knows that this
process is no longer uncertain.

Phase 3a: (Prepare to commit) Coordinator waits until all participants have sent
ready-commit, and then sends global-commit to all.

Phase 3b: (Prepare to commit) Participant waits for global-commit and then
commits. It knows that no other process is uncertain and thus commits without
violating NB.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 50

3-phase commit (3PC) protocol

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
prepare-commit to all participants, otherwise it sends global-abort, and halts.

Phase 2b: Each participant that voted vote-commit waits for prepare-commit, or
waits for global-abort after which it halts. If prepare-commit is received, the
process replies ready-commit and therefore the coordinator knows that this
process is no longer uncertain.

Phase 3a: (Prepare to commit) Coordinator waits until all participants have sent
ready-commit, and then sends global-commit to all.

Phase 3b: (Prepare to commit) Participant waits for global-commit and then
commits. It knows that no other process is uncertain and thus commits without
violating NB.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 51

Notation: message received
message sent

State transitions during 3PC.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 52

To proof correctness and termination of 3PC is difficult. Let’s look at one case to
demonstrate what could happen.

If a participant P times out in state PRECOMMIT, why can’t it ignore the timeout
and simply decide for commit?

The coordinator may have failed after having sent a prepare-commit-messsage to
P but before sending it to some other Q.

Thus P times out outside its uncertainty period while Q will time out inside its
uncertainty period.

Thus, committing of P would violate NB.

Therefore, before committing, P must assure, that all operational participants
have received a prepare-commit-messsage and therefore moved outside their
uncertainty period.

To this end a dedicated termination protocol has to be applied.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 53

To proof correctness and termination of 3PC is difficult. Let’s look at one case to
demonstrate what could happen.

If a participant P times out in state PRECOMMIT, why can’t it ignore the timeout
and simply decide for commit?

The coordinator may have failed after having sent a prepare-commit-messsage to
P but before sending it to some other Q.

Thus P times out outside its uncertainty period while Q will time out inside its
uncertainty period.

Thus, committing of P would violate NB.

Therefore, before committing, P must assure, that all operational participants
have received a prepare-commit-messsage and therefore moved outside their
uncertainty period.

To this end a dedicated termination protocol has to be applied.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 54

To proof correctness and termination of 3PC is difficult. Let’s look at one case to
demonstrate what could happen.

If a participant P times out in state PRECOMMIT, why can’t it ignore the timeout
and simply decide for commit?

The coordinator may have failed after having sent a prepare-commit-messsage to
P but before sending it to some other Q.

Thus P times out outside its uncertainty period while Q will time out inside its
uncertainty period.

Thus, committing of P would violate NB.

Therefore, before committing, P must assure, that all operational participants
have received a prepare-commit-messsage and therefore moved outside their
uncertainty period.

To this end a dedicated termination protocol has to be applied.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.1. Commit coordination Seite 55

Termination rules

By applying an election protocol among all operational processes determin a new
coordinator.

(1) If some process is Aborted, the coordinator decides Abort, sends ABORT
messages to all participants, and stops.

(2) If some process is Committed4, the coordinator decides Commit, sends COMMIT
messages to all participants, and stops.

(3) If all processes that reported their state are Uncertain, the coordinator decides
Abort, sends ABORT messages to all participants, and stops.

(4) If some process is Committable but none is Committed, the coordinator first
sends PRE-COMMIT messages to all processes that reported Uncertain, and
waits for acknowledgments from these processes. After having received these
acknowledgments the coordinator decides Commit, sends COMMIT messages to
all processes, and stops.

Processes may fail during the termination protocol! The protocol then has to be
repeated - either it will be finished by some coordinator or all processes will fail.

4This may have happened in a previous round of the termination protocol.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 56

10.2. Crash recovery

System architecture

Stable database

Set of pages in stable storage, typically magnetic disks or SSDs (solid state
drives).

Database cache

Dynamically evolving subset of the stable database copied into volatile memory.

Stable log

Set of log entries describing the history of updates on the cached database and
possible additional bookkeeping records on the system history, prerequisites for
redo and undo.

Log buffer

Data structure in volatile memory serving as a buffer in writing log entries to the
stable log.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 57

10.2. Crash recovery

System architecture

Stable database

Set of pages in stable storage, typically magnetic disks or SSDs (solid state
drives).

Database cache

Dynamically evolving subset of the stable database copied into volatile memory.

Stable log

Set of log entries describing the history of updates on the cached database and
possible additional bookkeeping records on the system history, prerequisites for
redo and undo.

Log buffer

Data structure in volatile memory serving as a buffer in writing log entries to the
stable log.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 58

Physical vs. physiological log entries

Physical: a full page.

after image: new content
before image: old content

Physiological:

old and new values of the byte range actually modified in the page,
operation describing the update on the page.

moreover:

Transactions follow the S2PL- or SS2PL-versions of the 2PL-protocol:

S2PL (strict 2PL): write locks are held until a transaction terminates,
SS2PL (strong 2PL): read and write locks are held until a transaction
terminates.

Granularity of locking are pages or smaller units, e.g. tuples. Smaller units than
pages imply special recovery considerations.

A page is written to the stable database only then, when it has been written to
the stable log before (write-ahead-log rule).

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 59

Physical vs. physiological log entries

Physical: a full page.

after image: new content
before image: old content

Physiological:

old and new values of the byte range actually modified in the page,
operation describing the update on the page.

moreover:

Transactions follow the S2PL- or SS2PL-versions of the 2PL-protocol:

S2PL (strict 2PL): write locks are held until a transaction terminates,
SS2PL (strong 2PL): read and write locks are held until a transaction
terminates.

Granularity of locking are pages or smaller units, e.g. tuples. Smaller units than
pages imply special recovery considerations.

A page is written to the stable database only then, when it has been written to
the stable log before (write-ahead-log rule).

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 60

Algorithms

A page in the database cache may be replaced and written back to the database
before the commit of the updating transaction (steal) or not (¬ steal).

A page is forced to be written back to the database for all committed
transactions (force) or not (¬ force).

Classification

force ¬force

¬steal
no redo

no undo

redo

no undo

steal
no redo

undo

redo

undo

in the following: steal/¬force

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 61

Data actions

Given transaction T and page number pageno.

read(pageno,T)

Pinning the page to a fixed virtual-memory address in the database cache, reading the
page contents of pageno and finally unpinning the page.

write(pageno,T)

Pinning the page to a fixed virtual-memory address in the database cache, reading the
page contents and finally declaring the page to be dirty, unpinning the page and writing
the page (physiological action).

full-write(pageno,T)

A new value is assigned to all bytes of a page and then it is written (physical action).

fetch(pageno)

Copies the previously uncached page pageno from the stable database into the database
cache.

flush(pageno)

Copies the cached page pageno to the stable database.

force()

Forces all log entries in the log buffer to the stable log.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 62

Data actions

Given transaction T and page number pageno.

read(pageno,T)

Pinning the page to a fixed virtual-memory address in the database cache, reading the
page contents of pageno and finally unpinning the page.

write(pageno,T)

Pinning the page to a fixed virtual-memory address in the database cache, reading the
page contents and finally declaring the page to be dirty, unpinning the page and writing
the page (physiological action).

full-write(pageno,T)

A new value is assigned to all bytes of a page and then it is written (physical action).

fetch(pageno)

Copies the previously uncached page pageno from the stable database into the database
cache.

flush(pageno)

Copies the cached page pageno to the stable database.

force()

Forces all log entries in the log buffer to the stable log.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 63

Overview of the system architecture components relevant to crash recovery.5

5
Figure from Weikum and Vossen, Transactional Information Systems.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 64

Numbering

Each action executed by the system is assigned a unique sequence number which
is increasing among all actions that refer to the same page and among all actions
that refer to the same transaction.

Log entries are tagged with a chronologically increasing log sequence number.

Each page in the stable database and the database cache carries a page sequence
number that is coupled with log sequence numbers of the log entries for that
page such that we can test the presence of a logged update in that page’s state:

The page sequence number of a pages is set to be the maximum log sequence
number of the log entries that refer to this page.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 65

Numbering

Each action executed by the system is assigned a unique sequence number which
is increasing among all actions that refer to the same page and among all actions
that refer to the same transaction.

Log entries are tagged with a chronologically increasing log sequence number.

Each page in the stable database and the database cache carries a page sequence
number that is coupled with log sequence numbers of the log entries for that
page such that we can test the presence of a logged update in that page’s state:

The page sequence number of a pages is set to be the maximum log sequence
number of the log entries that refer to this page.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 66

In the cache, pages q and
z are dirty.

The last update of page q
is not yet recorded in the
stable log and the stable
database either; the
respective transaction has
not yet committed.

Log entries are backwards
chained on a
per-transaction basis.

Sequence numbers in log entries and page headers.6

6
Figure from Weikum and Vossen, Transactional Information Systems.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 67

Basic data structures

type Page: record of
PageNo: identifier;
PageSeqNo: identifier;
Status: (clean, dirty) /* only for cached pages*/;
Contents: array [PageSize] of char;

end;
persistent var StableDatabase: set of Page indexed by PageNo;
var DatabaseCache:

set of Page indexed by PageNo;
type LogEntry: record of

LogSeqNo: identifier;
TransId: identifier;
PageNo: identifier;
ActionType:(write, full-write, begin, commit, rollback);
UndoInfo: array of char;
RedoInfo: array of char;
PreviousSeqNo: identifier;

end;
persistent var StableLog: ordered set of LogEntry indexed by LogSeqNo;
var LogBuffer:

ordered set of LogEntry indexed by LogSeqNo;
type TransInfo: record of

TransId: identifier;
LastSeqNo: identifier;

end;
var ActiveTrans: set of TransInfo indexed by TransId;

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 68

Actions During Normal Operation 1

write or full-write (pageno, transid, s):
DatabaseCache[pageno].Contents := modified contents;
DatabaseCache[pageno].PageSeqNo := s;
DatabaseCache[pageno].Status := dirty;
newlogentry.LogSeqNo := s;
newlogentry.ActionType := write or full-write;
newlogentry.TransId := transid;
newlogentry.PageNo := pageno;
newlogentry.UndoInfo := information to undo update

(before-image for full-write);
newlogentry.RedoInfo := information to redo update

(after-image for full-write);
newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;
ActiveTrans[transid].LastSeqNo := s;
LogBuffer += newlogentry;

fetch (pageno):
DatabaseCache += pageno;
DatabaseCache[pageno].Contents := StableDatabase[pageno].Contents;
DatabaseCache[pageno].PageSeqNo := StableDatabase[pageno].PageSeqNo;
DatabaseCache[pageno].Status := clean;

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 69

Actions During Normal Operation 2

flush (pageno):
if there is logentry in LogBuffer with logentry.PageNo = pageno

then force ();
StableDatabase[pageno].Contents := DatabaseCache[pageno].Contents;
StableDatabase[pageno].PageSeqNo := DatabaseCache[pageno].PageSeqNo;
DatabaseCache[pageno].Status := clean;

force ():
StableLog += LogBuffer;
LogBuffer := empty;

begin (transid, s):
ActiveTrans += transid;
ActiveTrans[transid].LastSeqNo := s;
newlogentry.LogSeqNo := s;
newlogentry.ActionType := begin;
newlogentry.TransId := transid;
newlogentry.PreviousSeqNo := nil;
LogBuffer += newlogentry;

commit (transid, s):
newlogentry.LogSeqNo := s;
newlogentry.ActionType := commit;
newlogentry.TransId := transid;
newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;
LogBuffer += newlogentry;
ActiveTrans -= transid;
force ();

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 70

simple Three-Pass Algorithm

(1) Analysis pass:
Determine start of stable log from master record; perform forward scan to
determine winner, i.e. commit log entry is encountered, and loser transactions,
i.e. no commit log entry exists.

(2) Redo pass:
Perform forward scan of stable log to redo all winner actions in chronological
(LSN) order until end of log is reached.

(3) Undo pass:
Perform backward scan of stable log to traverse all loser log entries in reverse
chronological order and undo the corresponding actions.

Benefits of forward processing

After the analysis pass the pages to be processed are known. Therefore, acessing
the pages can be optimized.

Physiological logging can be applied.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 71

Normal processing, crash and repeated crash. Recovery must be idempotent. 7

7
Figure from Weikum and Vossen, Transactional Information Systems.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 72

Example continued

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 73

Example continued

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 74

Example continued

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 75

Analysis pass

analysis pass () returns losers:

var losers: set of record

TransId: identifier;

LastSeqNo: identifier;

end indexed by TransId;

losers := empty;

min := LogSeqNo of oldest log entry in StableLog;

max := LogSeqNo of most recent log entry in StableLog;

for i := min to max do

case StableLog[i].ActionType:

begin: losers += StableLog[i].TransId;

losers[StableLog[i].TransId].LastSeqNo := nil;

commit: losers -= StableLog[i].TransId;

full-write: losers[StableLog[i].TransId].LastSeqNo := i;

end /*case*/;

end /*for*/;

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 76

Redo pass (full writes)

redo pass ():

min := LogSeqNo of oldest log entry in StableLog;

max := LogSeqNo of most recent log entry in StableLog;

for i := min to max

do

if StableLog[i].ActionType = full-write and

StableLog[i].TransId not in losers

then

pageno = StableLog[i].PageNo;

fetch (pageno);

full-write (pageno)

with contents from StableLog[i].RedoInfo;

end /*if*/;

end /*for*/;

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 77

Undo pass (full writes)

undo pass ():

while there exists t in losers

such that losers[t].LastSeqNo <> nil

do

nexttrans = TransNo in losers

such that losers[nexttrans].LastSeqNo =

max {losers[x].LastSeqNo | x in losers};

nextentry = losers[nexttrans].LastSeqNo;

if StableLog[nextentry].ActionType = full-write

then

pageno = StableLog[nextentry].PageNo;

fetch (pageno);

full-write (pageno)

with contents from StableLog[nextentry].UndoInfo;

losers[nexttrans].LastSeqNo :=

StableLog[nextentry].PreviousSeqNo;

end /*if*/;

end /*while*/;

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 78

Idempotence of a recovery algorithm means, that when the recovery algorithm crashes,
it will, when restarted again, perform the same steps as it did during the previous
restart.

The problem of idempotence

The restart operations are performed in the cache and may be arbitrarily flushed - so it
is not clear in general, whether a certain redo has to be repeated during a repeated
restart.

full-writes:

Full-writes assign values to all bytes of a page. Before- and after-image are full
page contents. Therefore, idempotence is guaranteed.

general writes:

If redo- or undo-information is given by operations - e.g. an insert-operation or a
shift of certain bytes - then idempotence is not guaranteed and extra mechanisms
have to be added.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 79

Incorporating general writes as physiological log entries

State testing during the redo pass:

for log entry for page p with log sequence number i, redo write only if
i > p.PageSeqNo and subsequently set p.PageSeqNo := i

State testing during the undo pass:

for log entry for page p with log sequence number i, undo write only if
i ≤ p.PageSeqNo and subsequently set p.PageSeqNo := i-1

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 80

Example continued

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 81

Example continued

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

10. Reliability 10.2. Local crash recovery Seite 82

Simple Three-Pass Algorithm with General Writes

redo pass ():

...

fetch (pageno);

if DatabaseCache[pageno].PageSeqNo < i

then

read and write (pageno)

according to StableLog[i].RedoInfo;

DatabaseCache[pageno].PageSeqNo := i;

end /*if*/;

...

undo pass ():

...

fetch (pageno);

if DatabaseCache[pageno].PageSeqNo >= nextentry.LogSeqNo

then

read and write (pageno)

according to StableLog[nextentry].UndoInfo;

DatabaseCache[pageno].PageSeqNo := nextentry.LogSeqNo - 1;

end /*if*/;

...

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen

	Reliability
	Commit coordination
	Local crash recovery

