
11. Replication Seite 1

11. Replication

Motivation

Reliable and high-performance computation on a single instance of a data object
is prone to failure.

Replicate data to overcome single points of failure and performance bottlenecks.

Problem: Accessing replicas uncoordinatedly can lead to different values for each
replica, jeopardizing consistency.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



11. Replication Seite 2

Basic architectural model

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



11. Replication Seite 3

Passive (primary-backup) replication model

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



11. Replication Seite 4

Active replication model

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



11. Replication Seite 5

CAP-Theorm

From the three desirable properties of a distributed shared-data system:

atomic data consistency (i.e. operations on a data item look as if they were
completed at a single instant),

system availability (i.e. every request received by a non-failing node must result in
a response), and

tolerance to network partition (i.e. the system is allowed to lose messages),

only two can be achieved at the same time at any given time.

=⇒ Given that in distributed large-scale systems network partitions cannot be avoided,
consistency and availability cannot be achieved at the same time.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



11. Replication Seite 6

the two options:

Distributed ACID-transactions:

Consistency has priority, i.e. updating replicas is part of the transaction - thus
availability is not guaranteed.

Large-scale distributed systems:

Availability has priority - thus a weaker form of consistency is accepted:
eventually consistent.

=⇒ Inconsistent updates may happen and have to be resolved on the application
level, in general.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



11. Replication Seite 7

Eventually Consistent - Revisited. Werner Vogels (CTO at Amazon):1

Strong consistency

After the update completes, any subsequent access will return the updated value.

Weak consistency

The system does not guarantee that subsequent accesses will return the updated value.
A number of conditions need to be met before the value will be returned. The period
between the update and the moment when it is guaranteed that any observer will always
see the updated value is dubbed the inconsistency window.

Eventual consistency

This is a specific form of weak consistency; the storage system guarantees that if no new
updates are made to the object, eventually all accesses will return the last updated value.
If no failures occur, the maximum size of the inconsistency window can be determined
based on factors such as communication delays, the load on the system, and the number
of replicas involved in the replication scheme. The most popular system that implements
eventual consistency is DNS (Domain Name System). Updates to a name are distributed
according to a configured pattern and in combination with time-controlled caches;
eventually, all clients will see the update.

1http://www.allthingsdistributed.com/2008/12/eventually consistent.html

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



11. Replication 11.1. Systemwide Consistency Seite 8

11.1: Systemwide Consistency

Systemwide consistent view on a data store.

Processes read and write data in a data store.

Each process has a local (or near-by) copy of each object,
Write operations are propagated to all replicas.

Even if rocesses are not considered to be transactions, we would expect, that read
operations will always return the value of the last write – however what does
”last” mean in the absense of a global clock?

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



11. Replication 11.1. Systemwide Consistency Seite 9

The difficulty of strict consistency

Any read on a data item returns the value of the most recent write on it.

This is the expected model of a uniprocessor system.

In a distributed system there does not exist a global clock!

TimeProcess A Process B

Read(x)
located at B

Write(x)

Which value shall be returned? 
Old or new one?

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



11. Replication 11.2. Client-side Consistency Seite 10

11.2: Client-side consistency

Consistent view on a data store shall be guaranteed for clients, not necessarily for the
whole system.

Goal: eventual consistency.

In the absence of updates, all replicas converge towards identical copies of
each other.
However, it should be guaranteed, that if a client has access to different
replica, it sees consistent data.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



11. Replication 11.2. Client-side Consistency Seite 11

Example: Client works with two different replica.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



11. Replication 11.3. Server-side Consistency Seite 12

11.3 Server-side Consistency

Problem

We would like to achieve consistency between the different replicas of one object.

This is an issue for active replication.

It is further complicated by the possibility of network partitioning.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



11. Replication 11.3. Server-side Consistency Seite 13

Active Replication

Update operations are propagated to each replica.

It has to be guaranteed, that different updates have to be processed in the same
order for each replica.

This can be achieved by totally-ordered multicast or by establishing a central
coordinator called sequencer, which assigns unique sequence numbers which
define the order in which updates have to be carried out.

These approaches do not scale well in large distributed systems.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



11. Replication 11.3. Server-side Consistency Seite 14

Quorum-Based Protocols

Idea: Clients have to request and acquire the permission of multiple servers before
either reading or writing a replicated data item.

Assume an object has N replicas.

For update, a client must first contact at least N
2

+ 1 servers and get them
to agree to do the update. Once they have agreed, all contacted servers
process the update assigning a new version number to the updated object.
For read, a client must first contact at least N

2
+ 1 servers and ask them to

send the version number of their local version. The client will then read the
replica with the highest version number.

This approach can be generalized to an arbitrary read quorum NR and write
quorum NW such that holds:

NR + NW > N,
NW > N

2
.

This approach is called quorum consensus method.

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen



11. Replication 11.3. Server-side Consistency Seite 15

Example

(a) Correct choice of read and write quorum.

(b) Choice running into possible inconsistencies.

(c) Correct choice known as ROWA (read one, write all).

Distributed Systems Part 2 Transactional Distributed Systems Prof. Dr. Georg Lausen


	Replication
	Systemwide Consistency
	Client-side Consistency
	Server-side Consistency


