Chapter 12: Modeling and Analysis of Distributed Applications

Petri-Nets

- Petri-nets are abstract formal models capturing the flow of information and objects in a way which makes it possible to describe distributed systems and processes at different levels of abstraction in a unified language.

- Petri-nets have the name from their inventor Carl Adam Petri, who introduced this formalism in his PhD-thesis 1962.
Processing of complaints: informal description.

- Customer inquiring
- Archive
- Complaint registration
- Complaint processing
Complaints processing: formal Petri-net orchestration.1

\begin{center}
\includegraphics[width=\textwidth]{complaints_petri_net.png}
\end{center}

Complaints processing: more than one complaint
Complaints processing: how to distinguish complaints
Complaints processing: keeping things together

Petri-Nets

Distributed Systems Part 2
Transactional Distributed Systems
Advanced Information Systems, SS 2011
Petri-nets model system dynamics.

- Activities trigger state transitions,
- Activities impose control structures,
- Applicable for modelling discrete systems.

Benefits

- Uniform language,
- Can be used to model sequential, causal independent (concurrent, parallel, nondeterministic) and monitored exclusive activities.
- Open for formal analysis, verification and simulation,
- Graphical intuitive representation.

The name *Petri-net* denotes a variety of different versions of nets - we will discuss the special case of *System Nets* following the naming introduced by W. Reisig.
Petri-nets

Petri-nets model system dynamics.

- Activities trigger state transitions,
- activities impose control structures,
- applicable for modelling discrete systems.

Benefits

- Uniform language,
- can be used to model sequential, causal independent (concurrent, parallel, nondeterministic) and monitored exclusive activities.
- open for formal analysis, verification and simulation,
- graphical intuitive representation.

The name *Petri-net* denotes a variety of different versions of nets - we will discuss the special case of *System Nets* following the naming introduced by W. Reisig.
Petri-nets

Petri-nets model system dynamics.

- Activities trigger state transitions,
- Activities impose control structures,
- Applicable for modelling discrete systems.

Benefits

- Uniform language,
- Can be used to model sequential, causal independent (concurrent, parallel, nondeterministic) and monitored exclusive activities.
- Open for formal analysis, verification and simulation,
- Graphical intuitive representation.

The name *Petri-net* denotes a variety of different versions of nets - we will discuss the special case of *System Nets* following the naming introduced by W. Reisig.
Section 12.1 Elementary System Nets

Basic elements of an elementary System Net (eS-Net)

- System states are represented by *places*, graphically circles or ovals.
- A place may be marked by an arbitrary number of *tokens* graphically represented by black dots.
- System dynamics is represented by *transitions*, graphically rectangles.
- *Transitions* represent activities (events) and the causalities between such activities (events) are represented by edges.
- *Multiplicities* represent the consumption, respectively creation of resources which are caused by the *occurrence* of activities.
Section 12.1 Elementary System Nets

Basic elements of an elementary System Net (eS-Net)

- System states are represented by *places*, graphically circles or ovals.
- A place may be marked by an arbitrary number of *tokens* graphically represented by black dots.
- System dynamics is represented by *transitions*, graphically rectangles.
- *Transitions* represent activities (events) and the causalities between such activities (events) are represented by edges.
- *Multiplicities* represent the consumption, respectively creation of resources which are caused by the occurrence of activities.
Section 12.1 Elementary System Nets

Basic elements of an elementary System Net (eS-Net)

- System states are represented by places, graphically circles or ovals.
- A place may be marked by an arbitrary number of tokens graphically represented by black dots.
- System dynamics is represented by transitions, graphically rectangles.
- Transitions represent activities (events) and the causalities between such activities (events) are represented by edges.
- Multiplicities represent the consumption, respectively creation of resources which are caused by the occurrence of activities.
3-Philosopher-Problem

\(b_j \): philosopher starts eating; \(e_j \): philosopher stops eating;
\(i_j \): philosopher is eating; \(g_j \): fork on the desk;
\(1 \leq j \leq 3 \).
A transition may occur when certain conditions with respect to the markings of its directly connected places are fulfilled; the occurrence of a transition - also called its firing - effects the markings of its directly connected edges, i.e. has local effects.

The surrounding of a transition t is given by t and all its directly connected places:

s_1, \ldots, s_k are called preconditions (pre-places), s_{k+1}, \ldots, s_n postconditions (post-places).

A place which is pre- and post-place at the same time is called a loop.
A transition *may* occur when certain conditions with respect to the markings of its directly connected places are fulfilled; the *occurrence* of a transition - also called its *firing* - effects the markings of its directly connected edges, i.e. has local effects.

The *surrounding* of a transition t is given by t and all its directly connected places:

s_1, \ldots, s_k are called *preconditions* (*pre-places*), s_{k+1}, \ldots, s_n *postconditions* (*post-places*).

A place which is pre- and post-place at the same time is called a *loop*.
A transition *may* occur when certain conditions with respect to the markings of its directly connected places are fulfilled; the *occurrence* of a transition - also called its *firing* - effects the markings of its directly connected edges, i.e. has local effects.

The *surrounding* of a transition *t* is given by *t* and all its directly connected places:

\[s_1, \ldots, s_k \text{ are called } \textit{preconditions (pre-places)}, \ s_{k+1}, \ldots, s_n \text{ postconditions (post-places).} \]

A place which is pre- and post-place at the same time is called a *loop*.
A *net* is given as a triple $N = (P, T, F)$, where

- P, the set of *places*, and T, the set of *transitionen*, are non-empty disjoint sets,
- $F \subseteq (P \times T) \cup (T \times P)$, is the set of directed edges, called *flow relation*, which is a binary relation such that $\text{dom}(F) \cup \text{cod}(F) = P \cup T$.

Let $N = (P, T, F)$ be a net and $x \in P \cup T$.

- $xF := \{y \mid (x, y) \in F\}$
- $Fx := \{y \mid (y, x) \in F\}$

For $p \in P$, pF is the set of *post-transitions* of p; Fp is the set of *pre-transitions* of p. For $t \in T$, tF is the set of *post-places* of t; Ft is the set of *pre-places* of t.
A net is given as a triple \(N = (P, T, F) \), where

- \(P \), the set of places, and \(T \), the set of transitionen, are non-empty disjoint sets,
- \(F \subseteq (P \times T) \cup (T \times P) \), is the set of directed edges, called flow relation, which is a binary relation such that \(\text{dom}(F) \cup \text{cod}(F) = P \cup T \).

Let \(N = (P, T, F) \) be a net and \(x \in P \cup T \).

\[
xF := \{ y \mid (x, y) \in F \}
\]
\[
Fx := \{ y \mid (y, x) \in F \}
\]

For \(p \in P \), \(pF \) is the set of post-transitions of \(p \); \(Fp \) is the set of pre-transitions of \(p \).
For \(t \in T \), \(tF \) is the set of post-places of \(t \); \(Ft \) is the set of pre-places of \(t \).
Let $N = (P, T, F)$ be a net. Any mapping m from P into the set of natural numbers NAT is called a marking of P.

A mapping $P \rightarrow \text{NAT} \cup \{\omega\}$ is called ω-marking. ω represents an infinitely large number of tokens.

Arithmetic of ω:

$$\omega - n = \omega, \omega + n = \omega, n \cdot \omega = \omega, 0 \cdot \omega = 0, \omega > n$$

where $n \in \text{NAT}, n > 0$.

A marking represents a possible system state.
Let $N = (P, T, F)$ be a net. Any mapping m from P into the set of natural numbers NAT is called a marking of P.

A mapping $P \rightarrow \text{NAT} \cup \{\omega\}$ is called ω-marking. ω represents an infinitely large number of tokens.

Arithmetic of ω:

$$\omega - n = \omega, \omega + n = \omega, n \cdot \omega = \omega, 0 \cdot \omega = 0, \omega > n$$

where $n \in \text{NAT}, n > 0$.

A marking represents a possible system state.
Let $N = (P, T, F)$ be a net. Any mapping m from P into the set of natural numbers \mathbb{NAT} is called a *marking* of P.

A mapping $P \rightarrow \mathbb{NAT} \cup \{\omega\}$ is called ω-marking. ω represents an infinitely large number of tokens.

Arithmetic of ω:

$$\omega - n = \omega, \omega + n = \omega, n \cdot \omega = \omega, 0 \cdot \omega = 0, \omega > n$$

where $n \in \mathbb{NAT}, n > 0$.

A *marking* represents a possible system state.
Let $N = (P, T, F)$ be a net. Any mapping m from P into the set of natural numbers NAT is called a \textit{marking} of P.

A mapping $P \rightarrow \text{NAT} \cup \{\omega\}$ is called \textit{\(\omega\)-marking}. \(\omega\) represents an infinitely large number of tokens.

Arithmetic of \(\omega\):

\[
\omega - n = \omega, \omega + n = \omega, n \cdot \omega = \omega, 0 \cdot \omega = 0, \omega > n
\]

where $n \in \text{NAT}, n > 0$.

A \textit{marking} represents a possible system state.
A eS-Net is given as \(N = (P, T, F, V, m_0) \), where

- \((P, T, F)\) a net,
- \(V : F \rightarrow \mathbb{NAT}^+\) a multiplicity,
- \(m_0\) a marking called initial marking.

\(N\) is called ordinary eS-Net, whenever \(V(f) = 1, \forall f \in F\).
A eS-Net is given as \(N = (P, T, F, V, m_0) \), where

- \((P, T, F)\) a net,
- \(V : F \rightarrow NAT^+\) a multiplicity,
- \(m_0\) a marking called initial marking.

\(N\) is called ordinary eS-Net, whenever \(V(f) = 1, \forall f \in F\).
A transition may fire once it is enabled.

Let $N = (P, T, F, V, m_0)$ a eS-Net, m a marking and $t \in T$ a transition.

- t is enabled at m, if for all pre-places $p \in Ft$ there holds:
 \[m(p) \geq V(p, t). \]

- Whenever t is enabled at m, then t may fire at m. Firing t at m transforms m to m', $m[t \succ m']$, in the following way:
 \[
 m'(p) := \begin{cases}
 m(p) - V(p, t) + V(t, p) & \text{falls } p \in Ft, p \in tF, \\
 m(p) - V(p, t) & \text{falls } p \in Ft, p \not\in tF, \\
 m(p) + V(t, p) & \text{falls } p \not\in Ft, p \in tF, \\
 m(p) & \text{sonst.}
 \end{cases}
 \]
A transition may fire once it is enabled.

Let $N = (P, T, F, V, m_0)$ a eS-Net, m a marking and $t \in T$ a transition.

- **t is enabled at m**, if for all pre-places $p \in Ft$ there holds:

 $$m(p) \geq V(p, t).$$

- Whenever t is enabled at m, then t may **fire** at m. Firing t at m transforms m to m', $m[t > m']$, in the following way:

 $$m'(p) := \begin{cases}
 m(p) - V(p, t) + V(t, p) & \text{falls } p \in Ft, p \in tF, \\
 m(p) - V(p, t) & \text{falls } p \in Ft, p \not\in tF, \\
 m(p) + V(t, p) & \text{falls } p \not\in Ft, p \in tF, \\
 m(p) & \text{sonst.}
 \end{cases}$$
A transition may fire once it is enabled.

Let \(N = (P, T, F, V, m_0) \) a eS-Net, \(m \) a marking and \(t \in T \) a transition.

- \(t \) is enabled at \(m \), if for all pre-places \(p \in Ft \) there holds:
 \[
 m(p) \geq V(p, t).
 \]

Whenever \(t \) is enabled at \(m \), then \(t \) may fire at \(m \). Firing \(t \) at \(m \) transforms \(m \) to \(m' \), \(m[t \succ m'] \), in the following way:

\[
m'(p) := \begin{cases}
 m(p) - V(p, t) + V(t, p) & \text{falls } p \in Ft, p \in tF, \\
 m(p) - V(p, t) & \text{falls } p \in Ft, p \notin tF, \\
 m(p) + V(t, p) & \text{falls } p \notin Ft, p \in tF, \\
 m(p) & \text{sonst.}
\end{cases}
\]
Transitions and markings in terms of vectors

Let places in \(P \) be linearly ordered.

- Markings of a net can be considered as vectors of nonnegative integers of dimension \(|P|\), called place-vectors.

- Transitions \(t \) can be characterized as vectors of nonnegative integers of dimension \(|P|\), called transition vectors \(\Delta t, t^+, t^- \):

Let \(N = (P, T, F, V, m_0) \) a eS-Net, \(p \in P \) and \(t \in T \).

\[
\begin{align*}
t^+(p) &:= \begin{cases}
V(t, p) & \text{if } p \in tF, \\
0 & \text{sonst.}
\end{cases} \\
t^-(p) &:= \begin{cases}
V(p, t) & \text{if } p \in Ft, \\
0 & \text{sonst.}
\end{cases} \\
\Delta t(p) &:= t^+(p) - t^-(p).
\end{align*}
\]
Transitions and markings in terms of vectors

Let places in P be linearly ordered.

- Markings of a net can be considered as vectors of nonnegative integers of dimension $|P|$, called *place-vectors*.

- Transitions t can be characterized as vectors of nonnegative integers of dimension $|P|$, called *transition vectors* $\Delta t, t^+, t^-$:

Let $N = (P, T, F, V, m_0)$ a eS-Net, $p \in P$ and $t \in T$.

\[
t^+(p) := \begin{cases} V(t, p) & \text{if } p \in tF, \\ 0 & \text{sonst.} \end{cases}
\]

\[
t^-(p) := \begin{cases} V(p, t) & \text{if } p \in Ft, \\ 0 & \text{sonst.} \end{cases}
\]

\[
\Delta t(p) := t^+(p) - t^-(p).
\]
Transitions and markings in terms of vectors

Let places in P be linearly ordered.

- Markings of a net can be considered as vectors of nonnegative integers of dimension $|P|$, called *place-vectors*.
- Transitions t can be characterized as vectors of nonnegative integers of dimension $|P|$, called *transition vectors* $\Delta t, t^+, t^-$:

Let $N = (P, T, F, V, m_0)$ a eS-Net, $p \in P$ and $t \in T$.

$$
t^+(p) := \begin{cases}
V(t, p) & \text{if } p \in tF, \\
0 & \text{sonst.}
\end{cases}
$$

$$
t^-(p) := \begin{cases}
V(p, t) & \text{if } p \in Ft, \\
0 & \text{sonst.}
\end{cases}
$$

$$
\Delta t(p) := t^+(p) - t^-(p).
$$
Transitions and markings in terms of vectors

Let places in P be linearly ordered.

- Markings of a net can be considered as vectors of nonnegative integers of dimension $|P|$, called *place-vectors*.

- Transitions t can be characterized as vectors of nonnegative integers of dimension $|P|$, called *transition vectors* $\Delta t, t^+, t^-$:

Let $N = (P, T, F, V, m_0)$ a eS-Net, $p \in P$ and $t \in T$.

$$t^+(p) := \begin{cases} V(t, p) & \text{if } p \in tF, \\ 0 & \text{sonst.} \end{cases}$$

$$t^-(p) := \begin{cases} V(p, t) & \text{if } p \in Ft, \\ 0 & \text{sonst.} \end{cases}$$

$$\Delta t(p) := t^+(p) - t^-(p).$$
Place and transition vectors at work:

- \(m \leq m' \), if \(m(p) \leq m'(p) \) for \(\forall p \in P \),
- \(m < m' \), if \(m \leq m' \), however \(m \neq m' \).
- \(t \) is enabled at \(m \) iff \(t^- \leq m \),
- \(m[t \triangleright m'] \) iff \(t^- \leq m \) and \(m' = m + \Delta t \).
Place and transition vectors at work:

- $m \leq m'$, if $m(p) \leq m'(p)$ for $\forall p \in P$,
- $m < m'$, if $m \leq m'$, however $m \neq m'$.
- t is enabled at m iff $t^- \leq m$,
- $m[t \succ m'$ iff $t^- \leq m$ and $m' = m + \Delta t$.
Reachability

Let \(N = (S, T, F, V, m_0) \) a eS-Net.

We denote \(W(T) \) the set of words with finite length over \(T \); \(\epsilon \in W(T) \) is called the empty word.

The length of a word \(w \in W(T) \) is given by \(l(w) \). We have \(l(\epsilon) = 0 \).

Let \(m, m' \) be markings of \(P \) and \(w \in W(T) \). We define a relation \(m[w > m'] \) inductively:

- \(m[\epsilon > m'] \) iff \(m = m' \),
- Let \(t \in T, w \in W(T) \). \(m[wt > m'] \) iff \(\exists m'' : m[w > m''], m''[t > m'] \).

The reachability relation \([* >] \) of \(N \) is defined by

\[
m[* > m'] \text{ iff } \exists w : w \in W(T), m[w > m'];
\]

\(m' \) is reachable from \(m \) in \(N \).
Reachability

Let $N = (S, T, F, V, m_0)$ a eS-Net.

We denote $W(T)$ the set of words with finite length over T; $\epsilon \in W(T)$ is called the empty word.

The length of a word $w \in W(T)$ is given by $l(w)$. We have $l(\epsilon) = 0$.

Let m, m' be markings of P and $w \in W(T)$. We define a relation $m[w \succ m'$ inductively:

- $m[\epsilon \succ m'$ iff $m = m'$,
- Let $t \in T, w \in W(T)$. $m[wt \succ m'$ iff $\exists m'': m[w \succ m'', m''[t \succ m']$

The reachability relation $[\star \succ]$ of N is defined by

$$m[\star \succ m' \text{ iff } \exists w : w \in W(T), m[w \succ m';$$

m' is reachable from m in N.
Reachability

Let $N = (S, T, F, V, m_0)$ a eS-Net.

We denote $W(T)$ the set of words with finite length over T; $\epsilon \in W(T)$ is called the empty word.

The length of a word $w \in W(T)$ is given by $l(w)$. We have $l(\epsilon) = 0$.

Let m, m' be markings of P and $w \in W(T)$. We define a relation $m[w \succ m']$ inductively:

- $m[\epsilon \succ m' \text{ iff } m = m']$,
- Let $t \in T, w \in W(T)$. $m[wt \succ m' \text{ iff } \exists m'': m[w \succ m'', m''[t \succ m']}$.

The reachability relation $[\succ]$ of N is defined by

$m[\succ m' \text{ iff } \exists w : w \in W(T), m[w \succ m']$;

m' is reachable from m in N.
Reachability

Let $N = (S, T, F, V, m_0)$ a eS-Net.

We denote $W(T)$ the set of words with finite length over T; $\epsilon \in W(T)$ is called the\textit{ empty word}.

The length of a word $w \in W(T)$ is given by $l(w)$. We have $l(\epsilon) = 0$.

Let m, m' be markings of P and $w \in W(T)$. We define a relation $m[w] \succ m'$ inductively:

- $m[\epsilon] \succ m'$ iff $m = m'$,
- Let $t \in T, w \in W(T)$. $m[wt] \succ m'$ iff $\exists m'' : m[w] \succ m'', m''[t] \succ m'$.

The \textit{reachability relation} $[\succ]$ of N is defined by

$m[\succ] m'$ iff $\exists w : w \in W(T), m[w] \succ m';$

m' is \textit{reachable} from m in N.
\(R_N(m) := \{ m' \mid m[* \succ m'] \} \), the set of markings reachable from \(m \) by \(N \),

\(L_N(m) := \{ w \mid \exists m' : m[w \succ m'] \} \), the set of all words representing firing sequences of transitions of \(N \) starting at \(m \),

\(\Delta w := \sum_{i=1}^{n} \Delta t_i \), wobei \(w = t_1 t_2 \ldots t_n \).

Results

- \([* \succ \) is reflexiv and transitiv.
- \(m[w \succ m'] \Rightarrow (m + m^*)[w \succ (m' + m^*)], \forall m^* \in \text{NAT}^{|S|}. \) (Monotonie)
- \(m[w \succ m'] \Rightarrow m' = m + \Delta w. \)
\begin{itemize}
\item $R_N(m) := \{ m' \mid m[*\Rightarrow m'] \}$, the set of markings reachable from m by N.
\item $L_N(m) := \{ w \mid \exists m' : m[w \Rightarrow m'] \}$, the set of all words representing firing sequences of transitions of N starting at m.
\item $\Delta w := \sum_{i=1}^{n} \Delta t_i$, wobei $w = t_1 t_2 \ldots t_n$.
\end{itemize}

\textbf{Results}

\begin{itemize}
\item $[*\Rightarrow$ is reflexiv and transitiv.
\item $m[w \Rightarrow m' \Rightarrow (m + m^*)[w \Rightarrow (m' + m^*)], \forall m^* \in NAT|S|$. (Monotonie)
\item $m[w \Rightarrow m' \Rightarrow m' = m + \Delta w$.
\end{itemize}
- $R_N(m) := \{ m' \mid m[\ast \succ m'] \}$, the set of markings reachable from m by N,
- $L_N(m) := \{ w \mid \exists m' : m[w \succ m'] \}$, the set of all words representing firing sequences of transitions of N starting at m,
- $\Delta w := \sum_{i=1}^{n} \Delta t_i$, wobei $w = t_1 t_2 \ldots t_n$.

Results

- $[\ast \succ$ is reflexiv and transitiv.
- $m[w \succ m' \Rightarrow (m + m^*)[w \succ (m' + m^*)], \forall m^* \in NAT^{|S|}$. (Monotonie)
- $m[w \succ m' \Rightarrow m' = m + \Delta w$.
12. Petri-Nets

12.1. Elementary System Nets

- \(R_N(m) := \{ m' \mid m \not{\succ} m' \} \), the set of markings reachable from \(m \) by \(N \),

- \(L_N(m) := \{ w \mid \exists m' : m \not{\succ} m' \} \), the set of all words representing firing sequences of transitions of \(N \) starting at \(m \),

- \(\Delta w := \sum_{i=1}^{n} \Delta t_i \), wobei \(w = t_1 t_2 \ldots t_n \).

Results

- \(\not{\succ} \) is reflexiv and transitiv.

- \(m [w \succ m' \Rightarrow (m + m^*)[w \succ (m' + m^*)], \forall m^* \in \text{NAT}^{|S|}. \) (Monotonie)

- \(m [w \succ m' \Rightarrow m' = m + \Delta w. \)
Reachability graph

Let $N = (P, T, F, V, m_0)$ a eS-Net. The *Reachability graph* of N is a directed graph $EG(N) := (R_N(m_0), B_N)$; $R_N(m_0)$ is the set of nodes and B_N is the set of annotated edges as follows:

$$B_N = \{ (m, t, m') \mid m, m' \in R_N(m_0), t \in T, m[t \triangleright m'] \}. $$
Exercise: Give the reachability graph of the following eS-Net:

\[
\begin{align*}
R_N(m_0) &= \{(1, 0, 0, 0), (1, 1, 0, 0), (1, 2, 0, 0), (1, 3, 0, 0), \ldots, \\
&\quad (0, 0, 1, 0), (0, 1, 1, 0), (0, 2, 1, 0), (0, 3, 1, 0), \ldots, \\
&\quad (0, 0, 1, 1), (0, 1, 1, 1), (0, 0, 1, 2), (0, 2, 1, 1), (0, 1, 1, 2), (0, 0, 1, 3), \ldots\} \\
L_N(m_0) &= \{\epsilon, t_1, t_1 t_1, t_1 t_1 t_1, \ldots, \\
&\quad t_2, t_1 t_2, t_1 t_1 t_2, t_1 t_1 t_1 t_2, \ldots, \\
&\quad t_1 t_2 t_3, t_1 t_1 t_2 t_3, t_1 t_1 t_2 t_3 t_3, t_1 t_1 t_1 t_2 t_2 t_3, t_1 t_1 t_1 t_1 t_2 t_3 t_3 t_3, \ldots\}
\end{align*}
\]
Section 12.2 Control Patterns

- eS-nets can be used to model *causal dependencies*; for modelling temporal aspects extensions of the formalism are required.
- Whenever between some transitions there are no causal dependencies, the transitions are called *concurrent*; concurrency is a prerequisite for parallelism.
Some typical causalities

Sequence

![Sequence Diagram](image1.png)

Iteration

![Iteration Diagram](image2.png)
AND-join, OR-join, AND-split, OR-split

AND-join

OR-join

AND-split

OR-split
OR-Split with regulation
OR-Join with regulation
A eS-Net with concurrency