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Section 12.3 Analysis

Boundedness

Let N = (P,T ,F ,V ,m0) be a eS-Net, m a marking, p ∈ P.

Let k ∈ NAT +. p is called k-bounded, if for each marking m′ there holds:

m′ ∈ RN(m0)⇒ m′(p) ≤ k.

p is called bounded, if p k-bounded for some k ∈ NAT +.

N is called bounded (k-bounded), if each place is bounded (k-bounded).

A eS-net is called safe, if it is 1-bounded. Places of a bounded net may be
interpreted as boolean conditions.
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Theorem

Let N = (P,T ,F ,V ,m0) be a eS-Net. N is unbounded, i.e. not bounded, iff there
exist w ∈W (T ), m,m′ ∈ RN(m0), such that m[ w�m′ and m′ > m.

Proof ⇐
Let w ∈W (T ), m,m′ ∈ RN(m0), such that m[ w�m′ and m′ > m. It holds

m[ w�m′[ w�m′′[ w�m′′′ . . . ,

where m < m′ < m′′ < m′′′ < . . ..

Thus there must exist at least one unbounded place.
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To proof ⇒ we first proof:

Lemma

For each infinite sequence of markings (mi ) of markings there exists an infinite
subsequencev (m′j ), which is weakly monotonic, i.e. l < k implies m′l ≤ m′k .

To prove the Lemma, first extract an infinite subsequence for which weak monotonicity holds

for the first components of its markings. Then extract from that subsequence an infinite

subsequence for which weak monotonicity holds for the second components of its markings,

etc.
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Proof ⇒

Consider the reachability graph EG(N), which has an infinite number of nodes. Starting
from m0 there exist a directed path to each node of the graph. Because of the finite
number of transitions, each node has only a finite number of direct successors.

Thus, at m0 there start an infinite number of paths without cycles, however only a finite
number of edges. Therefore, one of these edges must be part of infinitly many paths. Let
m0 → m1 be one such edge.

The same argument can be applied w.r.t. m1 such that we get m0 → m1 → m2, where
m1 → m2 is part of an infinite number of paths.

The above construction can be repeated infinitly many times. Therefore there exists an
infinite sequence of markings (mi ) of pairwise distinct markings, such that mk , ml ,
0 ≤ k ≤ l implies:

m0[ ∗�mk [ ∗�ml .

because of the Lemma there exists an infinite weakly monotonic subsequence (m′j ) von

(mi ). Let m′1,m
′
2 two successive elements. From construction we have m0[ ∗�m′1[ ∗�m′2,

m′1 ≤ m′2 and even m′1 < m′2.
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Reachability

Let N = (P,T ,F ,V ,m0) be a eS-Net, m ∈ NAT |P| a marking. The decision problem:

m ∈ RN(m0)?

is called reachability-problem.

The reachability problem is decidable, however even for bounded nets hyperexponential.
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Coverability

Let N = (P,T ,F ,V ,m0) be a eS-Net and let m,m′ be markings of N.

If m ≤ m′, then m′ covers m, respectively, m is covered by m′.

m is called coverable in N, if there exists a reachable marking m′ which covers m.

Consequence: Whenever a marking is not coverable w.r.t. some eS-Net N, it is not
reachable in N.

Give examples.
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Coverability Graph

Let N = (P,T ,F ,V ,m0) a eS-Net. The Coverability Graph of N is given by
CG(N) := (R,B) as follows:

inductive definition of an auxiliary tree T (N):

The values of the nodes in T (N) are ω-markings of N. The value of the root
node r is m0. Let m be the value of some node n of T (N), t ∈ T , and m[ t�m′.

Whenever on the path from the root r to n there exists a node n′′ with value m′′

such that m′′ < m′, then update m′ by m′(s) := ω for all places p with
m′′(p) < m′(p).
Introduce a new successor node n′ of n with value m′ and mark the edge from n to
n′ by t.
If there already exists another node in the tree with the same value m′, node n′ is
not considered any further.

A coverability graph is derived from a coverability tree by taking the values of the
nodes in the tree as nodes in the graph.
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Give a coverability tree.
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A eS-net with two different coverability graphs.
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Two eS-Nets with identical coverability graphs.
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Theorem

The coverability graph CG(N) = (R,B) of a eS-net N is finite.

Proof:
Assume CG(N) is not finite. Then it contains an infinite number of nodes. Thus there
exists an infinite, weakly monotonic sequence of ω-markings, i.e. values of the nodes in
the tree. Because of the construction of the auxiliary tree T (N), such an infinite
sequence cannot exist, as we can introduce ω only a finite number of times.
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To test the reachability of a certain marking we may first test its coverability and then
try to find a firing sequence which confirms its reachability.

Is marking m = (0, 3, 1, 3) reachable?

Yes, using the word w = t6
1 t2t

3
3 .
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Live, dead and deadlockfree

Let N = (P,T ,F ,V ,m0) a eS-Net.

A marking m is called dead in N, if there is no t ∈ T which is enabled at m.

A transition t is called dead at marking m, if there is no marking reachable from
m, such that t is enabled.

If t dead at m0, then t is called dead in N.

A transition t is called live at marking m, if for any reachable marking from m it
holds that t is not dead.
If m = m0, then t is called live in N.

A marking m is called live in N if all transitionen t ∈ T are live in m. If m = m0

then N is called live.

N is called deadlockfree, if no dead marking is reachable.

Note: whenever a transition is dead at some m, then it is not live at m.

However, the other direction does not hold.
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Firing the word t3t1t2 results in a dead marking (0, 0). The coverability graph does not
indicate this!

Lifeness cannnot be tested by inspection of the coverability graph.

Do there exist other techniques for analysis?
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Section 12.4 Invariants

Basics

A Petri-net invariant is a property of a Petri-net, which holds for any marking,
respectively transition word, of the net.

We study place- and transition-invariants, which are based on a matrix
representation of a net, respectively vector representation of markings and
transitions.

Incidence Matrix

Let N = (P,T ,F ,V ,m0) a eS-Net, T = {t1, . . . , tn}, P = {p1, . . . , pm},
n,m ≥ 1.

A vector of dimension n (m) is called T - (P-)vector.

For any t ∈ T , ∆t can be represented as a column P-vector.

The incidence matrix of N is given as a m × n-matrix C = (∆t1, . . . ,∆tn),
respectively C = (ci,j)1≤i≤m,1≤j≤n, where cij := ∆tj(si ).
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Example
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Incidence matrices are independent of concrete markings,

In case of loops, information concerning multiplicities is lost.

Parikh-Vektor

The transpose of a vector x , resp. matrix C is denoted by x>, bzw. C>.

The Parikh-Vektor q̄ of some q ∈W (T ) is a column T -vector, n =| T |, defined as
follows:

q̄ : T → NAT , where q̄(t) is the number of occurences of t in q.
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State Equation

Let q ∈W (T ) and m,m′ markings.

If m[ q�m′, then
∑
t∈T

(q̄(t) ·∆t) = C · q̄ = ∆q.

Moreover, as m[ q�m′, we have

m′ = m + ∆q>.

The equation:
m′ = m + (C · q̄)>

is called state equation.

The system of linear equations given by

C · x = (m′ −m)>

has an integer nonnegative solution x .
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however the following does not hold in general:

If C · x = (m′ −m)> has an integer nonnegative solution then

∃q ∈W (T ) : m[ q�m′,

I.e., the reachability problem cannot be solved, in general.

Example

Let m = (1, 0, 0), m′ = (0, 0, 1).
x = (0, 1, 1, 0)> is a solution for C · x = (m′ −m)>, however we cannot find a word
which can be fired at m.
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Theorem

Let N be a eS-Net and ∆ a P-vector. There exists a marking m∗ and a word
q ∈W (T ), such that m∗[ q�(m∗ + ∆), iff C · x = ∆> has an integer nonnegative
solution.

Proof:
”⇒”: trivial.

”⇐”: Let m∗ :=
∑
t∈T

x(t) · t−.
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Corollary

Let N = (P,T ,F ,V ,m0) be a eS-Net. There exists a marking m∗ such that
N = (P,T , F ,V ,m∗) unbounded, iff C · x > 0 has an integer nonnegative solution.

Useful application of the corollary:

If there does not exist an integer nonnegative solution for C · x > 0, then for any initial
marking, N is bounded.

Distributed Systems Part 2 Transactional Distributed Systems Advanced Information Systems, SS 2011



12. Petri-Nets 12.4. Invariants Seite 99

Corollary

Let N = (P,T ,F ,V ,m0) be a eS-Net. There exists a marking m∗ such that
N = (P,T , F ,V ,m∗) unbounded, iff C · x > 0 has an integer nonnegative solution.

Useful application of the corollary:

If there does not exist an integer nonnegative solution for C · x > 0, then for any initial
marking, N is bounded.

Distributed Systems Part 2 Transactional Distributed Systems Advanced Information Systems, SS 2011



12. Petri-Nets 12.4. Invariants Seite 100

Transition-Invariants (T-Invariants)

Let N = (P,T ,F ,V ,m0) be a eS-Net.

Any nontrivial integer solution x of the homogenous linear equation system
C · x = 0 is called transition-invariant (T-invariant) of N.

A T-invariant x is called proper, if x ≥ 0.

A T-invariant x is called realizable in N, if there exists a word q ∈W (T ) with
q̄ = x and a reachable marking m such that m[ q�m.

N is called covered with T-invariants, if there exists a T-invariant x of N with all
components positive, i.e. greater than 0.

Proper T-invariants denote possible cycles of the reachability graph - realizable
T-invariants denote cycles which indeed may occur.
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Example

T-invariants of

are as follows:

x = λ1


1
1
2
0

+ λ2


0
0
0
1


where λ1, λ2 integers.
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Theorem

Let N = (S ,T ,F ,V ,m0) be a eS-Net. If there exists a marking m, such that N live
and bounded at m, then N covered by T-invariants.

Proof: Let N live and bounded at some m.

As N is live at m, there exists a word q1 ∈ LN(m), which contains all transitions in T and the
marking m + ∆q1 is reachable from m.

Moreover, N is live at m + ∆q1 as well. Therefore, there exits a word q2 ∈ LN(m), which
contains all transitions in T and N is live at the marking m + ∆q1q2.

There exists an infinite sequence of markings (mi ), where mi := m + ∆q1 . . . qi , such that:

m[ q1�m1[ q2�m2 . . .mi [ qi+1�mi+1 . . .

As N is bounded at m, there is only a finite number of markings which are reachable.
Therefore, there exist i , j ∈ NAT : i < j such that mi = mj . Thus

mi [ qi+1 . . . qj �mj = mi

As all these qi mention all transitions, we finally conclude

x = q̄i+1 + . . .+ q̄j

is a T-Invariant which covers N.
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Useful application of the theorem:

Whenever N is not covered by T-invariants, then for every marking it holds N not live
or not bounded.
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Place-Invariants (P-Invariants)

Let N = (P,T ,F ,V ,m0) be a eS-Net.

Any nontrivial integer solution y of the homogeneous linear equation system
y · C = 0 is called place-invariant (P-invariant) of N.

A P-invariant y is called proper P-invariant, if y ≥ 0.

N is called covered with P-invariants, if there exists a P-invariant y with all
components positive, i.e. greater than 0.

If y is a P-invariant, then for any marking m the sum of the number of tokens on the
places p is invariant with respect to the firing of the transitions weighted by y(p).
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Example

P-invariants of

are as follows:

yT = λ

 1
1
1


where λ an integer.
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Theorem

Let N = (P,T ,F ,V ,m0) a eS-Net and let y a P-invariant of N. Then:

m ∈ RN(m0)⇒ y ·m> = y ·m>0 .

Proof:
Assume m0[ q�m. Then m = m0 + (C · q̄)> and also:

y ·m> = y ·m>0 + y · (C · q̄) =

= y ·m>0 + (y · C) · q̄ = y ·m>0 + 0 · q̄ = y ·m>0 .
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Corollary:

Let y P-invariante of N, m marking.

y ·m> 6= y ·m>0 ⇒ m 6∈ RN(m0).

Let y proper P-invariant of N. Let p ∈ P such that y(p) > 0.

Then, for any initial marking, s is bounded.

Proof: y ·m>0 = y ·m> ≥ y(p) ·m(p) ≥ m(p).

Let N be covered by P-invariants. N is bounded for any initial marking.
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Note, the following net is bounded for any initial marking, however does not have a
P-invariant:

P-invariants allow sufficient tests for non-reachability and boundedeness.

Distributed Systems Part 2 Transactional Distributed Systems Advanced Information Systems, SS 2011



12. Petri-Nets 12.4. Invariants Seite 124

Note, the following net is bounded for any initial marking, however does not have a
P-invariant:

P-invariants allow sufficient tests for non-reachability and boundedeness.

Distributed Systems Part 2 Transactional Distributed Systems Advanced Information Systems, SS 2011



12. Petri-Nets 12.4. Invariants Seite 125

Example: Prove freedom from deadlocks.

C =



−1 −1 −1 1 1 1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

 P-invariants:

Y1 = (0, 1, 0, 0, 1, 0, 0)

Y2 = (0, 0, 1, 0, 0, 1, 0)

Y3 = (0, 0, 0, 1, 0, 0, 1)

Y4 = (1, 1, 1, 1, 0, 0, 0)

Initial marking is given by m0 = (2, 0, 0, 0, 1, 1, 1). Assume there exist a dead marking m, m0[ q�m. Then
it must hold m(p1) = m(p2) = m(p3) = 0. Because of Y4 it follows m(p0) = 2. As m dead it follows
m(p4) = m(p5) = m(p6) = 0. However this contradicts Y1m0 = Y1m.

Distributed Systems Part 2 Transactional Distributed Systems Advanced Information Systems, SS 2011



12. Petri-Nets 12.4. Invariants Seite 126

Example: Prove freedom from deadlocks.

C =



−1 −1 −1 1 1 1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

 P-invariants:

Y1 = (0, 1, 0, 0, 1, 0, 0)

Y2 = (0, 0, 1, 0, 0, 1, 0)

Y3 = (0, 0, 0, 1, 0, 0, 1)

Y4 = (1, 1, 1, 1, 0, 0, 0)

Initial marking is given by m0 = (2, 0, 0, 0, 1, 1, 1). Assume there exist a dead marking m, m0[ q�m. Then
it must hold m(p1) = m(p2) = m(p3) = 0. Because of Y4 it follows m(p0) = 2. As m dead it follows
m(p4) = m(p5) = m(p6) = 0. However this contradicts Y1m0 = Y1m.

Distributed Systems Part 2 Transactional Distributed Systems Advanced Information Systems, SS 2011



12. Petri-Nets 12.4. Invariants Seite 127

Example: Prove freedom from deadlocks.

C =



−1 −1 −1 1 1 1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

 P-invariants:

Y1 = (0, 1, 0, 0, 1, 0, 0)

Y2 = (0, 0, 1, 0, 0, 1, 0)

Y3 = (0, 0, 0, 1, 0, 0, 1)

Y4 = (1, 1, 1, 1, 0, 0, 0)

Initial marking is given by m0 = (2, 0, 0, 0, 1, 1, 1). Assume there exist a dead marking m, m0[ q�m. Then
it must hold m(p1) = m(p2) = m(p3) = 0. Because of Y4 it follows m(p0) = 2. As m dead it follows
m(p4) = m(p5) = m(p6) = 0. However this contradicts Y1m0 = Y1m.

Distributed Systems Part 2 Transactional Distributed Systems Advanced Information Systems, SS 2011



12. Petri-Nets 12.5. Place Capacities Seite 128

Section 12.5 Place Capacities

Sometimes when modelling we would like to fix an upper bound for the number of
tokens in a place.

Let N = (P,T ,F ,V ,m0) be a eS-Net, c a ω-marking of P and let m0 ≤ c.
(N, c) is called eS-Net with capacities. c(p), p ∈ P is called capacity of p.

For eS-nets with capacities the notion of being enabled is adapted:

a transition t ∈ T is enabled at marking m, if t− ≤ m and
m + ∆t ≤ c.

Capacities graphically are labels of places - no label means capacity ω.
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Any eS-net with capacities can be simulated by a eS-Net without capacities.

Construction

Let p a palce with capacity k = c(p), k ≥ 1. Let pco be the complementary place
of p which is assigned the initial marking k −m0(p).

Whenever for a transition t we have ∆t(p) > 0, we introduce an arc from pco to
t with multiplicity ∆t(p);
whenever ∆t(p) < 0, we introduce an arc from t to pco with multiplicity −∆t(p).
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A eS-Net with capacities and its simulation by a bounded eS-Net.
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