Section 12.7 Workflow-Nets

Literature[.]

van der Aalst, Hofstede: http://is.tm.tue.nl/staff/wvdaalst/publications/p174.pdf

- In N, every $x \in P \cup T$ is contained in a path from i to o.

< (T) >

→ ∃ →

Section 12.7 Workflow-Nets

Literature:

van der Aalst, Hofstede: http://is.tm.tue.nl/staff/wvdaalst/publications/p174.pdf

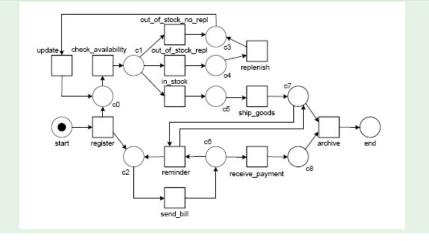
Workflow (WF)-Net

A eS-Net N = (P, T, F) is a WF-Net, if

- There exists an *input-place* $i \in P$ where $Fi = \emptyset$.
- There exists an *output-place* $o \in P$ where $oF = \emptyset$.
- In *N*, every $x \in P \cup T$ is contained in a path from *i* to *o*.

< 同 > < 三 > < 三 >

Example: WF-net order handling



Distributed Systems Part 2

æ

イロン 不同と 不同と 不同と

Let N = (P, T, F) a WF-Net with input-place *i* and output-place *o*.

- For $p \in P$ there holds $Fp \neq \emptyset$ or p = i.
- For $p \in P$ there holds $pF \neq \emptyset$ or p = o.
- Let $\overline{N} = (\overline{P}, \overline{T}, \overline{F})$, where $\overline{P} = P$, $\overline{T} = T \cup \{t^*\}$ and $\overline{F} = F \cup \{(o, t^*), (t^*, i)\}$.

N is called the *shortcut* net of N.

N is strongly connected.

イロト イポト イヨト イヨト

Let N = (P, T, F) a WF-Net with input-place *i* and output-place *o*.

- For $p \in P$ there holds $Fp \neq \emptyset$ or p = i.
- For $p \in P$ there holds $pF \neq \emptyset$ or p = o.
- Let $\overline{N} = (\overline{P}, \overline{T}, \overline{F})$, where $\overline{P} = P$, $\overline{T} = T \cup \{t^*\}$ and $\overline{F} = F \cup \{(o, t^*), (t^*, i)\}$.

N is called the *shortcut* net of N.

N is strongly connected.

3

イロト イポト イヨト イヨト

Let N = (P, T, F) a WF-Net with input-place *i* and output-place *o*.

- For $p \in P$ there holds $Fp \neq \emptyset$ or p = i.
- For $p \in P$ there holds $pF \neq \emptyset$ or p = o.
- Let $\overline{N} = (\overline{P}, \overline{T}, \overline{F})$, where $\overline{P} = P$, $\overline{T} = T \cup \{t^*\}$ and $\overline{F} = F \cup \{(o, t^*), (t^*, i).$

N is called the *shortcut* net of N.

N is strongly connected.

3

イロト イポト イヨト イヨト

Let N = (P, T, F) a WF-Net with input-place *i* and output-place *o*.

- For $p \in P$ there holds $Fp \neq \emptyset$ or p = i.
- For $p \in P$ there holds $pF \neq \emptyset$ or p = o.
- Let $\overline{N} = (\overline{P}, \overline{T}, \overline{F})$, where $\overline{P} = P$, $\overline{T} = T \cup \{t^*\}$ and $\overline{F} = F \cup \{(o, t^*), (t^*, i)\}$.

 \overline{N} is called the *shortcut* net of N.

 \overline{N} is strongly connected.

3

A WF-Net is called *sound*, if the following holds.

Let m_i be a initial marking, such that only the input place i is marked. Let m_o be a output marking, such that only the out-put place o is marked.

- From every marking m, which is reachable from m_i , marking m_o is reachable.
- **•** m_o is the only marking reachable from m_i for which o is marked.
- The WF-Net does not contain dead transitions.

Theorem

A WF-Net N is sound iff (\overline{N},m_i) is life and bounded.

< 🗇 🕨

- 4 The last

A WF-Net is called *sound*, if the following holds.

Let m_i be a initial marking, such that only the input place i is marked. Let m_o be a output marking, such that only the out-put place o is marked.

- From every marking m, which is reachable from m_i , marking m_o is reachable.
- **•** m_o is the only marking reachable from m_i for which o is marked.
- The WF-Net does not contain dead transitions.

Theorem

A WF-Net N is sound iff (\overline{N}, m_i) is life and bounded.

< 🗇 🕨

A WF-Net is called *sound*, if the following holds.

Let m_i be a initial marking, such that only the input place i is marked. Let m_o be a output marking, such that only the out-put place o is marked.

- From every marking m, which is reachable from m_i , marking m_o is reachable.
- m_o is the only marking reachable from m_i for which o is marked.
- The WF-Net does not contain dead transitions.

Theorem

A WF-Net N is sound iff (\overline{N}, m_i) is life and bounded.

・ 同 ト ・ ヨ ト ・ ヨ ト

A WF-Net is called *sound*, if the following holds.

Let m_i be a initial marking, such that only the input place *i* is marked. Let m_o be a output marking, such that only the out-put place *o* is marked.

- From every marking m, which is reachable from m_i , marking m_o is reachable.
- m_o is the only marking reachable from m_i for which o is marked.
- The WF-Net does not contain dead transitions.

Theorem

A WF-Net N is sound iff (\overline{N}, m_i) is life and bounded.

A (10) × (10) × (10) ×

A WF-Net N is sound, if (\overline{N}, m_i) live and bounded.

Proof

As (\overline{N}, m_i) live there exists for any reachable marking m (including m_i) a firing word leading to a marking m' such that t^* is enabled. Therefore o is marked in m'.

Consider an arbitrary such marking m' which is reachable from m_i , i.e. $m' = m'' + m_o$. t^* is enabled in m'. Thus marking $m'' + m_i$ is reachable from m_i . As (\overline{N}, m_i) is bounded we have m'' = 0.

A WF-Net N is sound, if (\overline{N}, m_i) live and bounded.

Proof

As (\overline{N}, m_i) live there exists for any reachable marking m (including m_i) a firing word leading to a marking m' such that t^* is enabled. Therefore o is marked in m'.

Consider an arbitrary such marking m' which is reachable from m_i , i.e. $m' = m'' + m_o$. t^* is enabled in m'. Thus marking $m'' + m_i$ is reachable from m_i . As (\overline{N}, m_i) is bounded we have m'' = 0.

・ロト ・日ト ・ヨト

A WF-Net N is sound, if (\overline{N}, m_i) live and bounded.

Proof

As (\overline{N}, m_i) live there exists for any reachable marking m (including m_i) a firing word leading to a marking m' such that t^* is enabled. Therefore o is marked in m'.

Consider an arbitrary such marking m' which is reachable from m_i , i.e. $m' = m'' + m_o$. t^* is enabled in m'. Thus marking $m'' + m_i$ is reachable from m_i . As (\overline{N}, m_i) is bounded we have m'' = 0.

ヘロン 人間と 人間と 人間と

Whenever a WF-Net N is sound, then (\overline{N}, m_i) is bounded.

Proof

We show (N, m_i) bounded.

Assume (N, m_i) is not bounded. Then there exist markings m_1, m_2 , such that $m_i[* \succ m_1, m_1[* \succ m_2 \text{ and } m_2 > m_1.$

As N sound we have $m_1[q \succ m_o]$. Moreover, because of $m_2 > m_1$, there exists a marking m with $m_2[q \succ m$ and $m > m_o]$. This is a contradiction to N sound.

N sound and (N, m_i) bounded implies (\overline{N}, m_i) bounded.

A (B) > A (B) > A (B)

Whenever a WF-Net N is sound, then (\overline{N}, m_i) is bounded.

Proof

We show (N, m_i) bounded.

Assume (N, m_i) is not bounded. Then there exist markings m_1, m_2 , such that $m_i[* \succ m_1, m_1[* \succ m_2 \text{ and } m_2 > m_1]$.

As N sound we have $m_1[q \succ m_o]$. Moreover, because of $m_2 > m_1$, there exists a marking m with $m_2[q \succ m$ and $m > m_o]$. This is a contradiction to N sound.

N sound and (N, m_i) bounded implies (\overline{N}, m_i) bounded.

(4月) (4日) (4日)

Whenever a WF-Net N is sound, then (\overline{N}, m_i) is bounded.

Proof

We show (N, m_i) bounded.

Assume (N, m_i) is not bounded. Then there exist markings m_1, m_2 , such that $m_i[* \succ m_1, m_1[* \succ m_2 \text{ and } m_2 > m_1]$.

As N sound we have $m_1[q \succ m_o]$. Moreover, because of $m_2 > m_1$, there exists a marking m with $m_2[q \succ m$ and $m > m_o]$. This is a contradiction to N sound.

N sound and (N, m_i) bounded implies (\overline{N}, m_i) bounded.

(4 同) (4 回) (4 回)

Whenever a WF-Net N is sound, then (\overline{N}, m_i) is bounded.

Proof

We show (N, m_i) bounded.

Assume (N, m_i) is not bounded. Then there exist markings m_1, m_2 , such that $m_i[* \succ m_1, m_1[* \succ m_2 \text{ and } m_2 > m_1.$

As N sound we have $m_1[q \succ m_o]$. Moreover, because of $m_2 > m_1$, there exists a marking m with $m_2[q \succ m$ and $m > m_o]$. This is a contradiction to N sound.

N sound and (N, m_i) bounded implies (\overline{N}, m_i) bounded.

(4月) (1日) (日)

Whenever a WF-Net N is sound, then (\overline{N}, m_i) is bounded.

Proof

We show (N, m_i) bounded.

Assume (N, m_i) is not bounded. Then there exist markings m_1, m_2 , such that $m_i[* \succ m_1, m_1[* \succ m_2 \text{ and } m_2 > m_1]$.

As N sound we have $m_1[q \succ m_o]$. Moreover, because of $m_2 > m_1$, there exists a marking m with $m_2[q \succ m$ and $m > m_o]$. This is a contradiction to N sound.

N sound and (N, m_i) bounded implies (\overline{N}, m_i) bounded.

(4月) (4日) (4日)

If a WF-Netz N is sound, then (\overline{N}, m_i) is life.

Proof

As N sound, from any marking m' which is reachable from m_i , we can reach m_o .

Therefore, from any m', which is reachable in (\overline{N}, m_i) , we can reach m_i . As N does not have any dead transitions w.r.t. m_i , it follows (\overline{N}, m_i) is live.

If a WF-Netz N is sound, then (\overline{N}, m_i) is life.

Proof

As N sound, from any marking m' which is reachable from m_i , we can reach m_o .

Therefore, from any m', which is reachable in (N, m_i) , we can reach m_i . As N does not have any dead transitions w.r.t. m_i , it follows (\overline{N}, m_i) is live.

A (10) A (10)

If a WF-Netz N is sound, then (\overline{N}, m_i) is life.

Proof

As N sound, from any marking m' which is reachable from m_i , we can reach m_o .

Therefore, from any m', which is reachable in (\overline{N}, m_i) , we can reach m_i . As N does not have any dead transitions w.r.t. m_i , it follows (\overline{N}, m_i) is live.

< 同 > < 三 > < 三 >

Let $N = (P, T, F, V, m_0)$.

- N is called Synchronization-Graph, if for each place p it holds |Fp| = |pF| = 1.
- *N* is called *Statemachine*, if for each transition *t* it holds |Ft| = |tF| = 1.
- *N* is called *Free-Choice-Net* (*FC-Net*), if $t, t' \in pF \Rightarrow Ft = \{s\} = Ft'$.
- *N* is called *Extended-Free-Choice-Net* (*EFC-Net*), if $t, t' \in pF \Rightarrow Ft = Ft'$.

< 177 ▶

Let $N = (P, T, F, V, m_0)$.

- N is called Synchronization-Graph, if for each place p it holds |Fp| = |pF| = 1.
- *N* is called *Statemachine*, if for each transition *t* it holds |Ft| = |tF| = 1.
- N is called Free-Choice-Net (FC-Net), if $t, t' \in pF \Rightarrow Ft = \{s\} = Ft'$.
- *N* is called *Extended-Free-Choice-Net* (*EFC-Net*), if $t, t' \in pF \Rightarrow Ft = Ft'$.

< 47 ▶

Let $N = (P, T, F, V, m_0)$.

- N is called Synchronization-Graph, if for each place p it holds |Fp| = |pF| = 1.
- N is called *Statemachine*, if for each transition t it holds |Ft| = |tF| = 1.
- N is called Free-Choice-Net (FC-Net), if $t, t' \in pF \Rightarrow Ft = \{s\} = Ft'$.
- *N* is called *Extended-Free-Choice-Net* (*EFC-Net*), if $t, t' \in pF \Rightarrow Ft = Ft'$.

< 47 ▶

Let $N = (P, T, F, V, m_0)$.

- N is called Synchronization-Graph, if for each place p it holds |Fp| = |pF| = 1.
- N is called *Statemachine*, if for each transition t it holds |Ft| = |tF| = 1.
- N is called Free-Choice-Net (FC-Net), if $t, t' \in pF \Rightarrow Ft = \{s\} = Ft'$.
- *N* is called *Extended-Free-Choice-Net* (*EFC-Net*), if $t, t' \in pF \Rightarrow Ft = Ft'$.

- 4 🗇 ▶

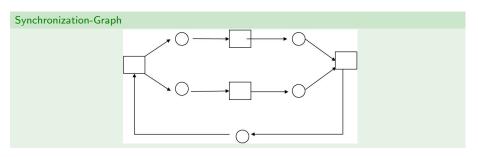
Let $N = (P, T, F, V, m_0)$.

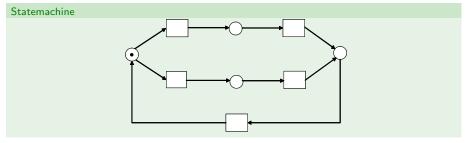
- N is called Synchronization-Graph, if for each place p it holds |Fp| = |pF| = 1.
- N is called *Statemachine*, if for each transition t it holds |Ft| = |tF| = 1.
- N is called Free-Choice-Net (FC-Net), if $t, t' \in pF \Rightarrow Ft = \{s\} = Ft'$.
- N is called Extended-Free-Choice-Net (EFC-Net), if $t, t' \in pF \Rightarrow Ft = Ft'$.

- A synchronization-graph is also a FC-Net.
- A statemachine is also a FC-Net.
- A FC-Net is also a EFC-Net.

æ

イロン イヨン イヨン イヨン

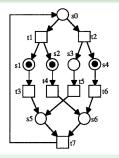




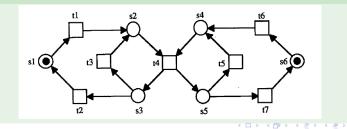
æ

イロン イヨン イヨン イヨン

FC-Net



FC-Net

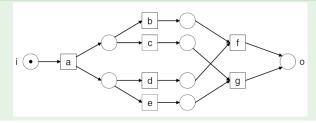


Distributed Systems Part 2

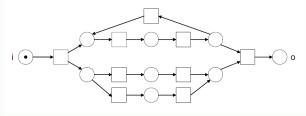
Transactional Distributed Systems

Advanced Information Systems, SS 2011

A not sound WF-Net; the WF-Net is free-choice



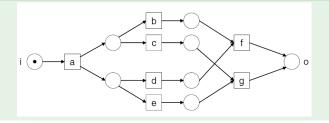
A WF-Net which is sound, however not free-choice



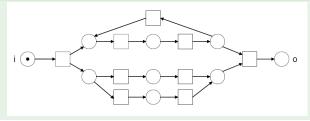
臣

イロン イヨン イヨン イヨン

A not sound WF-Net; the WF-Net is free-choice



A WF-Net which is sound, however not free-choice



臣

イロン イヨン イヨン イヨン

Soundness of a WF-Net

A WF-Net, which is a FC-Net, can be checked for soundness in polynomial time.

... from practical experiences:

For modeling in practical applications FC-Nets are sufficient.

- 4 同 2 4 日 2 4 日 2

Soundness of a WF-Net

A WF-Net, which is a FC-Net, can be checked for soundness in polynomial time.

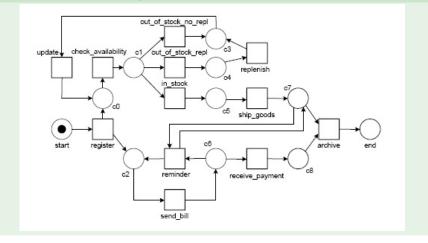
... from practical experiences:

For modeling in practical applications FC-Nets are sufficient.

3

||◆同 || ◆ 臣 || ◆ 臣 ||

Example: WF-Net order handling - make it free-choice!



æ

イロン 不同と 不同と 不同と