

Georges-Köhler Allee, Geb. 51 D-79110 Freiburg lausen@informatik.uni-freiburg.de

Exercises Distributed Systemes: Part 2 Summerterm 2012

 $23.7.2012,\ 27.7.2012$

7. Exercise sheet: Petri nets

Exercise 1 Consider the following 2 elementary System-Nets:

Discuss similarities and differences.

Exercise 2

Give the coverability graph of the following net. First construct the auxiliary tree.

Exercise 3

Consider the following net:

Does there exist an initial marking m_0 such that the net is life in m_0 ? Justify your answer.

Exercise 4

Consider the following net.

Compute all T- and P-invariants and decide, whether or not the net is covered.

Exercise 5

Consider the following net.

Compute all T- and P-invariants. What kind of interesting conclusions can you make?

Exercise 6

Consider the following colored System-Net.

$$\underbrace{x}_{s1} \underbrace{t1} \underbrace{x}_{Y} \underbrace{x}_{s2} \underbrace{z}_{Z} \underbrace{t2}$$

$$C(s_1) = \{rot\}$$

$$C(s_2) = C(t_1) = C(t_2) = \{blau, gelb\}$$

$$X(blau) = X(gelb) = rot$$

$$Y(blau) = 2 \cdot blau + gelb$$

$$Y(gelb) = 3 \cdot gelb$$

$$Z(blau) = blau$$

$$Z(gelb) = gelb$$

Unfold the net.

Exercise 7

Consider the following colored System-Net.

Fold the net such that it contains only one place and only one transition.