ime and Global States Page 1

University of Freiburg, Germany Department of Computer Science

Distributed Systems

Chapter 2 Time and Global States

Christian Schindelhauer

19. April 2013

Fine and Global States Page 2

2: Time and Global States

How can distributed processes be coordinated and synchronized, e.g.

- when accessing shared resources,
- when determining the order of triggered events?

The importance of time

- Distributed systems do not have only one clock.
- Clocks on different machines are likely to differ.
- Physical versus logical time.

2.1: Physical Time

Example; distributed software development using UNIX make

- Computer sets its clock back after compiling a source file
- User edits the source file
- make assumes the source file has not been changed since compilation
- make will not recompile

ime and Global States 2.1. Physical Time Page 4

TAI and UTC

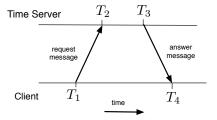
- International Atomic Time TAI: mean number of ticks of caesium 133 clocks since midnight Jan. 1, 1958 divided by number of ticks per second 9,192,631,770.
- Problem: 86,400 TAI seconds (corresponding to a day) are today 3 msec less than a mean solar day (because solar days are getting longer because of tidal forces).
- Solution: whenever discrepancy between TAI and solar time grows to 800 msec a leap second is added to solar time.
- The corresponding time is called Universal Coordinated Time UTC.
- UTC is broadcast every second as a short pulse by the National Institute of Standard Time NIST. It is broadcast by GPS as well.

Fime and Global States 2.1. Physical Time Page 5

Time in distributed systems

■ Each computer p is equipped with a local clock C_p , which causes H interrupts per second. Given UTC time t, the clock value of p is given by $C_p(t)$.

- Let $C'_p(t) = \frac{dC_p}{dt}$
- Ideally, $C_p'(t) = 1$, real clocks have an error of about $\pm 10^{-5}$ (10 ppm)
- lacksquare If there exists some constant ho such that

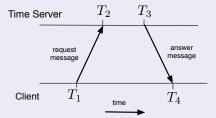

$$1 - \rho \le \frac{dC}{dt} \le 1 + \rho,$$

 ρ is called the maximum drift rate.

- If synchronized Δt ago, two clocks may differ at most by $2\rho\Delta t$.
- To ensure synchronization within precision δ , then they need to be synchronized at least every $\frac{\delta}{2a}$ seconds.

Network Time Protocol NTP

- Assumption, one system C is connected to a UTC server. This system is called time-server.
- Each machine C, every $\frac{\delta}{2\rho}$ seconds, sends a time request to the time-server, which immediately responds with the current UTC.
- \blacksquare machine C sets its time to be T_3 ,
 - where T is the received time
 - RTT is the round trip time


Problems and solutions

- Problem: time may run backwards!
- Solution: clocks converge to the correct time.
- Problem: Because of message delays, reported time will be outdated when received by a client.
- Solution: Try to find a good estimation for the delay.
- ... (next slide)

Fime and Global States 2.1. Physical Time Page 8

Problems and solutions

- Problem: Because of message delays, reported time will be outdated when received by a client.
- Solution: Try to find a good estimation for the delay.
 - Algorithm of Flaviu Cristian
 Use $\frac{(T_4-T_1)}{2}$ if no other information is available.
 - If interrupt handling time I is known, use $\frac{(T_4-T_1-I)}{2}$.
 - ...else ...

Fime and Global States 2.1. Physical Time Page 9

Problems and solutions

 Problem: Because of message delays, reported time will be outdated when received by a client.

Solution: Try to find a good estimation for the delay

NTP: Network Time Protocol

- ...else ...
- To adjust *A* to *B*, use piggybacking:
- A sends a request to B timestamped with T_1 .
- **B** records the time of receipt T_2 (taken from its local clock) and returns a response timestamped with T_3 and piggybacking T_2 .
- A records the time of arrival T_4 . The propagation time from A to B is assumed to be the same as from B to A, $T_2 T_1 \approx T_4 T_3$.
- The offset θ of A relative to B can be estimated by A:

$$\theta = T_3 + \frac{(T_2 - T_1) + (T_4 - T_3)}{2} - T_4 = \frac{(T_2 - T_1) + (T_3 - T_4)}{2}$$

- If $\theta < 0$, in principle, A has to set its clock backwards.
- Take the measures several times and compute the mean while ignoring outliers.

(ロト (日) (星) (星) (星) (星) (星) (日) (Christian Schindelhauer Distributed Systems 19. April 2013

Examples: A has to be adjusted to B.

A sends a request to B timestamped with T_1 . B records the time of receipt T_2 (taken from its local clock) and returns a response timestamped with T_3 and piggybacking T_2 . A records the time of arrival T_4 .

The offset θ of A relative to B can be estimated by A:

$$\theta = \frac{(T_2 - T_1) + (T_3 - T_4)}{2}$$

(a) No need for adaption detected.

$$T_1 = 10, T_2 = 12, T_3 = 14, T_4 = 16 \Longrightarrow \theta = 0.$$

(b) A has to slow down.

$$T_1 = 10, T_2 = 12, T_3 = 14, T_4 = 18 \Longrightarrow \theta = -1.$$

(c) A has to hurry up.

$$T_1 = 10, T_2 = 12, T_3 = 14, T_4 = 14 \Longrightarrow \theta = 1.$$

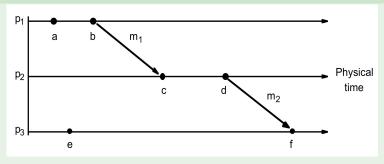
ime and Global States 2.1. Physical Time Page 11

On scalability of NTP (roughly)

- NTP is an Internet standard (RFC 5905).
- NTP service is provided by a network of servers.
- Primary servers are directly connected to a UTC-source.
- Secondary servers synchronize themselves with primary servers.
- This approach is applied recursively leading to several layers.
- Server A adjusts itself to server B if B is assigned a lower layer than A.
- The whole network is reconfigurable and thus is able to react on errors.

2.2: Logical Time

Why?


- Getting physical clocks absolutely synchronized is not possible.
- Thus it is not always possible to determine the order of two events.
- For such cases logical time can be used as a solution.
 - If two events happen in the same process they are ordered as observed.
 - If two processes interchange messages, then the sending event is always considered to be before the receiving event.

Lamport's happened-before relation (causal ordering)

- If two events a, b happen in the same process p_i they are ordered as observed and we write $a \rightarrow_i b$. Moreover, this implies $a \rightarrow b$ systemwide.
- If two processes interchange messages, then the sending event a is always considered to be before the receiving event b, thus $a \rightarrow b$.
- Whenever $a \rightarrow b$ and $b \rightarrow c$, then also $a \rightarrow c$.

Events not being ordered by \rightarrow are called concurrent.

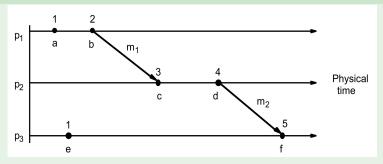
Example

 $from \ {\it Distributed Systems-Concepts \ and \ Design}, \ {\it Coulouris, \ Dollimore, \ Kindberg}$

We conclude $a\to b, b\to c, c\to d, d\to f, a\to f$, however not $a\to e$; a,e are concurrent.

Algorithm of Leslie Lamport

- Let $L_i(e)$ denote the time stamp of event e at process P_i .
- When a new event a occurs in process P_i :


$$L_i := L_i + 1$$

- Each message m sent from P_i to P_j is piggybacked by the timestamp $L_i(a)$ of the send-event a.
- When (m, t_a) is received by P_j , P_j adjusts its logical clock L_j to the logical clock of P_j .

$$L_j := \max\{L_j, t_a\}$$

and increments L_i for the received message event.

Three clocks with application of Lamport's algorithm.

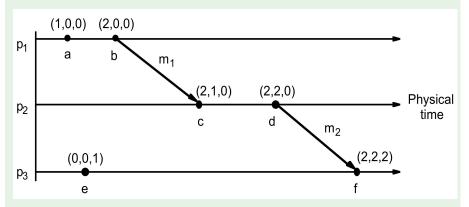
from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

Totally ordered logical clocks

- Extend the Lamport clock for each process P_i:
- Clock values must be systemwide unique
 - for this the clock value L_i is referred to with the process id i, i.e. (L_i, i)
 - \blacksquare all distinct clocks L_i can be unified into a system clock L.
- Define the total ordering

$$(T_i, i) < (T_j, j) :\iff \begin{cases} i < j & \text{if } T_i = T_j \\ T_i < T_j & \text{else} \end{cases}$$

- So, we translate a partial ordering into a total ordering
- However from the total ordering L(a) < L(b) one cannot conclude $a \rightarrow b$.


Mattern's Vector Clocks

- Vector clock for a system of n processes: array of n integers.
- Each process P_i keeps its own vector clock V_i which is used to timestamp local events.
- Processes piggyback their own vector clock on messages they send.
- Update rules for vector clocks:
 - VC1: Initially, $V_i[j] := 0$ for $i, j \in \{1, \ldots, n\}$
 - VC2: P_i timestamps prior to each event: $V_i[i] := V_i[i] + 1$.
 - VC3: P_i sends the value $t = V_i$ with each message.
 - VC4: When P_i receives some message piggybacked with timestamp t, it sets

$$V_i[j] := max\{V_i[j], t[j]\}$$
 for $i = 1, 2, ..., n$

- $V_i[i]$ is the number of events that P_i has timestamped.
- $V_i[j]$ for $i \neq j$ is the number of events that have occurred at P_j to the knowledge of P_i .

Vector Clock Example

from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

Comparing vector timestamps

- The clock vectors define a partial ordering
 - V = V' iff V[j] = V'[j] for all $j \in \{1, ..., n\}$
 - $V \leq V'$ iff $V[j] \leq V'[j]$ for all $j \in \{1, \ldots, n\}$
 - $V < V' \text{ iff } V \leq V' \land V \neq V'.$
- If for events a, b neither $V(a) \le V(b)$ nor $V(a) \ge V(b)$ the events are called concurrent, i.e. a||e|

Comparing vector timestamps

$$V(a)$$
 $V(b)$ Relation

$$(2,1,0)$$
 $(2,1,0)$ $V(a) = V(b)$ all entries are the same

$$(1,2,3)$$
 $(2,3,4)$ $V(a) < V(b)$ all entries of V are prior to V'

$$(1,2,3)$$
 $(3,2,1)$ $a \parallel b$ two events are concurrent

Lamport Relationship and Vector Clocks

Theorem

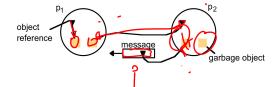
For any two events e_i , e_i :

$$e_j \rightarrow e_i \iff V(e_j) < V(e_i)$$
.

Proof sketch

- $lackbox{\bullet} e_j
 ightarrow e_i \implies V_j < V_i.$
 - If the events occur on the same process then $V_j < V_i$ follow directly.
 - $e_j \rightarrow e_i$ implies a message is sent after e_j to the process with event e_i or two succeeding events of a process
 - Since each entry of the receiving process is updated to the at least the maximum of the entries of the sending processes, $V_i < V_i$
- lacksquare $e_i \rightarrow e_i \iff V_i < V_i$.
 - If both events occur on the same process, $e_i \rightarrow e_i$ follows straightforward.
 - An increase of the i-th row can only be caused by a message path sent from the process of ei to ei
- complete proof is left as exercise

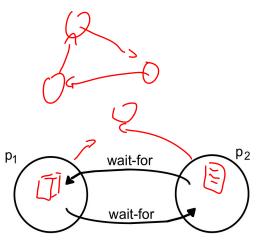
Fime and Global States 2.3. Global States Page 22


2.3. Global System States

Distributed Garbage Collection

- Non-referenced objects need to be erased
- p₂ has an object referenced in a message to p₁
- p₁ has an object referenced by p₂
- Neither one can be erased

 How to determine a global state in the absence global time

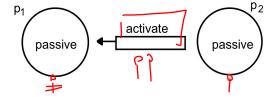


Time and Global States 2.3. Global States Page 23

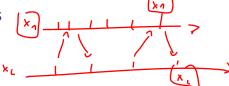
2.3. Global System States

Distributed Deadlock Detection

- occurs when processes wait for each other to send a message
- and the processes form a cycle


from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

Time and Global States 2.3. Global States Page 24


2.3. Global System States

Distributed <u>Termination</u> Detection

- How to detect that a distributed algorithm has terminated
- Assume p_1 and p_2 request values from the other
- If they wait for a value they are passive, otherwise active
- Assume both processes are passive. Can we conclude the system has terminated?
- No, since there might be an activating message on its way



2.3. Global System States

Distributed Debugging

- Distributed systems are difficult to debug
- \blacksquare e.g. consider a program where each process has a changing variable x_i
- All variables are required to be in range $|x_i x_j| \le 1$.
- How to be sure that this will never be violated?

nd Global States 2.3. Global States Page 26

Cuts

■ Consider system \mathcal{P} of n processes p_i for i = 1, ..., n.

■ The execution of a process is characterized by its history (of events e_i^t)

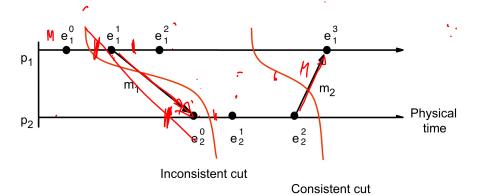
$$history(p_i) = h_i = \langle e_i^0, e_i^1, e_i^2, \ldots \rangle$$

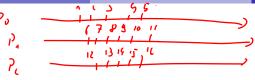
■ We denote a finite prefix

$$h_i^k = \langle e_i^0, e_i^1, \dots, e_i^k \rangle$$

- An event is either
 - an internal action or
 - sending a message or
 - receiving a message
- Let s_i^k denote the state of process p_i immediately before event e_i^k .
- \blacksquare The global history H is

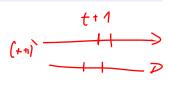
$$H = h_1 \cup h_2 \cup \ldots \cup h_n$$


■ A cut C of the system's execution is a set of prefaces


$$C = h_1^{c_1} \cup h_2^{c_2} \cup \ldots \cup h_n^{c_n}$$

Consistent Cuts

- A cut C is consistent if,
 - For all events $e \in C$: $f \rightarrow e \implies f \in C$
- i.e. for each event it also contains all the events that happened-before the event.



Global States

- A consistent global state corresponds to a consistent cut.
- A <u>run</u> is a total ordering of all events in a global history that is consistent with each local history's ordering $(\rightarrow_i$, for i = 1, ..., n).
- A consistent run (linearization) is an ordering of the events in the global history that is consistent with the happened-before-relation (\rightarrow) on H.
- Consistent runs pass only through consistent global states.

Fime and Global States 2.3. Global States Page 29

Global State Predicates, Stability, Safety and Liveness

- A <u>global state predicate</u> is a function that maps from the set of global states to {true, false}.
- <u>Stability</u> of a global state predicate: A global state predicate is <u>stable</u> if once it
 has reached true it remains in this state for all states reachable from this state.
- Safety is the assertion that an <u>undesired state predicate evaluates</u> to false to all states S reachable from the starting state S₀.
- <u>Liveness</u> is the assertion that a desired state predicate evaluates to true to all states S reachable from the starting state S₀.

Time and Global States 2.3. Global States Page 30

How to detect and record a global state

'Snapshot' algorithm of Chandy and Lamport

Goal

- record a set of events corresponding to a global state (consistent cut)
- in a living system during run-time
- without extra process

Requirements

- (a) channels, processes do not fail. Communication is reliable
- d channels are uni-directional and have FIFO message delivery
- graph of processes and channels is strongly connected
- 📵 any process may initiate a snapshot
- f processes continue their execution (including messages)

Notations

- extitle 6 $extitle p_i$ sends all messages to other processes.
- Marker message: a special message distinct from every other message

Page 31 2. Time and Global States

Distributed Snapshot of Chandy and Lamport

Marker receiving rule for process p.

On p_i 's receipt of a *marker* message over channel c:

if (p_i) has not yet recorded its state) it

records its process state now;

records the state of c as the empty set;

turns on recording of messages arriving over other incoming channels;

else

 p_i records the state of c as the set of messages it has received over c since it saved its state.

end if

Marker sending rule for process p_i

After p_i has recorded its state, for each outgoing channel c:

 p_i sends one marker message over c

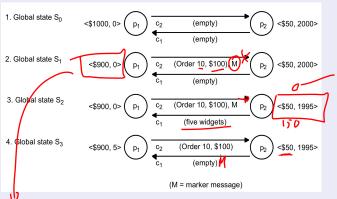
(before it sends any other message over c).

from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

General remarks

A snapshot consists of the state of a process and states of all incoming channels.

- Starting a snapshot:
 - Any process *P* can start a snapshot.
 - 1 Create a local snapshot of P's state.
 - 2 Send marker message over all channels.
 - Upon receipt of a marker message, other processes participate in the snapshot.
- Collecting the snapshot:
 - Every process has created a local snapshot.
 - The local snapshot can be sent to a collector process.
- Terminating a snapshot:
 - If marker message has been received on all channels, the process the snapshot terminates
 - Then the snapshot can be sent to a collector process.


Page 33

\$1000.0

Example

from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

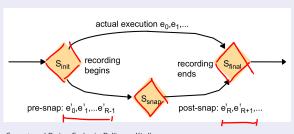
Termination of the snapshot algorithm

snapshot terminates

If marker message has been received on all channels, the process the

- If the communication graph induced by the messages is strongly connected
- then the marker eventually reaches all nodes
- ⇒ only a finite number of messages need to be recorded

2. Time and Global States 2.3. Global States Page 35



The snapshot algorithm selects a Consistent Cut

- Consider two events $e_i \rightarrow e_j$ on processes p_i and p_j
- If $\underline{e_i}$ is in the cut of the snapshot, then e_i should be, too
- If $\underline{e_j}$ occurred before p_j taking its snapshot, then $\underline{e_i}$ should have occurred before p_i has taking its snapshot
- If $p_i = p_j$ this is obvious.
- Now we consider $p_i \neq p_j$ and assume (*) that e_i is not in the cut and e_j is within the cut.
- Consider messages $m_1, m_2, \dots m_h$ causing the happened-before relationship $e_i \to e_j$.
- So, m_1 must have sent after the snapshot, and m_2 , and so forth. Each of this messages must have been sent after the marker message occurred on each channel (because of FIFO rules on the channel).
- Then, e_i cannot be in the cut. This contradicts (*) and proofs the claim.

Time and Global States 2.3. Global States Page 36

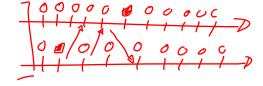
Reachability of the snapshot algorithm selects a Consistent Cut

 $from \ \textit{Distributed Systems-Concepts and Design}, \ \mathsf{Coulouris}, \ \mathsf{Dollimore}, \ \mathsf{Kindberg}$

- A snapshot characterizes events into two types
 - 1 pre-snap: An event happening before marking the corresponding process
 - 2 post-snap: An event happening after marking
- Note that pre-snap events can take place after post-snap events
- It is impossible that $e_i \rightarrow e_j$ if e_i is a post-snap event and e_j is a pre-snap event

2. Time and Global States 2.3. Global States Page 37

Distributed Debugging



Goal of algorithm of Marzullo and Neiger

- Testing properties post-hoc, e.g. safety conditions
- Capture traces rather than snapshots
- Gathered by a monitoring process (outside the system)
- How are process states collected
- How to extract consistent global states
- How to evaluate safety, stability and liveness conditions

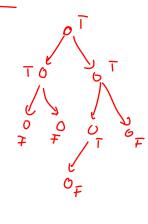
Time and Global States 2.3. Global States Page 38

Distributed Debugging

Temporal operators

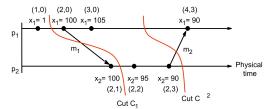
Consider all linearizations of H

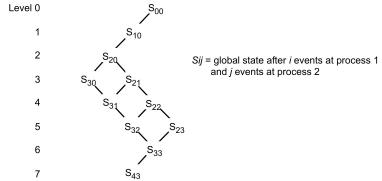
possible ϕ There exists a consistent global state S through a linearization such that $\phi(S)$ is true.


definitely ϕ For all linearizations a consistent global state will be passed such that $\phi(S)$ is true.

Relationship of Definitely and Possibly

$$\forall S \in H : \neg \phi(S) \implies \neg definitely \phi$$


$$\forall S \in H : \neg \phi(S) \implies \neg possibly \phi$$


7 definitely
$$\neg \phi \implies \neg possibly \phi$$

Time and Global States 2.3. Global States Page 40

Distributed Debugging: Definitely $|x_1 - x_2| \le 50$

= 340

19. April 2013

Christian Schindelhauer

2. Time and Global States 2.3. Global States Page 41

Algorithm of Marzullo & Neiger

Collecting the states

- All initial states are sent to the monitor
- All state changes are sent to the monitor
- lacktriangle If only a predicate is monitored ϕ then only states are sent where ϕ changes
- With the states the corresponding vector clock is sent to the monitor
- The vector clocks will be used to establish the →-relationship
- The monitor computes the DAG corresponding to the happened-before-relationship
- Arrange the graph in levels L = 0, 1, ... such that no global state in level happened before a state in lower level.
- In Level 0 there is only the initial state.

2. Time and Global States 2.3. Global States Page 42

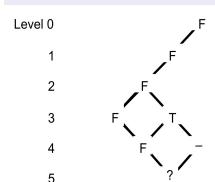
1. Evaluating possibly ϕ for global history H of N processes

```
L := 0;
States := \{ (s_1^0, s_2^0, ..., s_N^0) \};
while (\phi(S) = False \text{ for all } S \in \text{ States})
L := L + 1;
Reachable := \{ S' : S' \text{ reachable in } H \text{ from some } S \in \text{ States } \land \text{ level}(S') = L \};
States := Reachable
end while
output "possibly \phi";
```

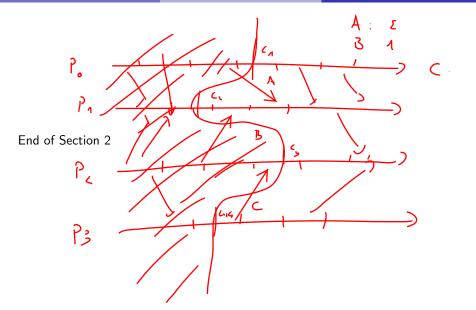
 $from \ \textit{Distributed Systems-Concepts and Design}, \ \mathsf{Coulouris}, \ \mathsf{Dollimore}, \ \mathsf{Kindberg}$

2. Evaluating definitely ϕ for global history H of N processes

```
L := 0;
if(\phi(s_1^0, s_2^0, ..., s_N^0)) \ then \ States := \{\} \ else \ States := \{ \ (s_1^0, s_2^0, ..., s_N^0) \};
while \ (States \neq \{\})
L := L + 1;
Reachable := \{S' : S' \ reachable \ in \ H \ from \ some \ S \in States \land \ level(S') = L\};
States := \{S \in Reachable : \phi(S) = False\}
end \ while
output \ "definitely \ \phi";
```


 $from \ {\it Distributed Systems-Concepts and Design}, \ {\it Coulouris}, \ {\it Dollimore}, \ {\it Kindberg}$

Evaluating Definitely $\phi(S)$


Cost

Let n be the number of processes with k events each

- Time: $O(k^n)$
- Space: *O*(*kn*).

$$F = (\phi(S) = False); T = (\phi(S) = True)$$

