University of Freiburg, Germany Department of Computer Science

Distributed Systems

Chapter 2 Time and Global States

Christian Schindelhauer

19. April 2013

2: Time and Global States

How can distributed processes be coordinated and synchronized, e.g.

- when accessing shared resources,
- when determining the order of triggered events?

The importance of time

- Distributed systems do not have only one clock.
- Clocks on different machines are likely to differ.
- Physical versus logical time.

2.1: Physical Time

Example; distributed software development using UNIX make

- Computer sets its clock back after compiling a source file
- User edits the source file
- make assumes the source file has not been changed since compilation
- make will not recompile

TAI and UTC

- International Atomic Time TAI: mean number of ticks of caesium 133 clocks since midnight Jan. 1, 1958 divided by number of ticks per second 9,192,631,770.
- Problem: 86,400 TAI seconds (corresponding to a day) are today 3 msec less than a mean solar day (because solar days are getting longer because of tidal forces).
- Solution: whenever discrepancy between TAI and solar time grows to 800 msec a leap second is added to solar time.
- The corresponding time is called Universal Coordinated Time UTC.
- UTC is broadcast every second as a short pulse by the National Institute of Standard Time NIST. It is broadcast by GPS as well.

Time in distributed systems

- Each computer p is equipped with a local clock C_p , which causes H interrupts per second. Given UTC time t, the clock value of p is given by $C_p(t)$.
- Let $C'_p(t) = \frac{dC_p}{dt}$
- Ideally, $C'_{p}(t) = 1$, real clocks have an error of about $\pm 10^{-5}$ (10 ppm)
- \blacksquare If there exists some constant ρ such that

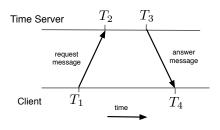
$$1-\rho \leq \frac{dC}{dt} \leq 1+\rho,$$

 ρ is called the maximum drift rate.

- If synchronized Δt ago, two clocks may differ at most by $2\rho\Delta t$.
- To ensure synchronization within precision δ , then they need to be synchronized at least every $\frac{\delta}{2a}$ seconds.

Network Time Protocol NTP

- Assumption, one system *C* is connected to a UTC server. This system is called time-server.
- Each machine C , every $\frac{\delta}{2\rho}$ seconds, sends a time request to the time-server, which immediately responds with the current UTC.
- machine C sets its time to be T_3 ,
 - where T is the received time
 - RTT is the round trip time



3

Page 7

Problems and solutions

- Problem: time may run backwards!
- Solution: clocks converge to the correct time.
- Problem: Because of message delays, reported time will be outdated when received by a client.
- Solution: Try to find a good estimation for the delay.
- ...(next slide)

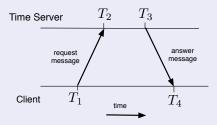
э

Problems and solutions

- Problem: Because of message delays, reported time will be outdated when received by a client.
- Solution: Try to find a good estimation for the delay.

Algorithm of Flaviu Cristian

- Use $\frac{(T_4 T_1)}{2}$ if no other information is available.
- If interrupt handling time *I* is known, use $\frac{(T_4 T_1 I)}{2}$.
- ...else ...



2

イロン イヨン イヨン イヨン

Problems and solutions

- Problem: Because of message delays, reported time will be outdated when received by a client.
- Solution: Try to find a good estimation for the delay NTP: Network Time Protocol
 - ...else ...
 - To adjust A to B, use piggybacking:
 - A sends a request to B timestamped with T_1 .
 - *B* records the time of receipt T_2 (taken from its local clock) and returns a response timestamped with T_3 and piggybacking T_2 .
 - A records the time of arrival T_4 . The propagation time from A to B is assumed to be the same as from B to A, $T_2 T_1 \approx T_4 T_3$.
 - The offset θ of A relative to B can be estimated by A:

$$\theta = T_3 + \frac{(T_2 - T_1) + (T_4 - T_3)}{2} - T_4 = \frac{(T_2 - T_1) + (T_3 - T_4)}{2}$$

If $\theta < 0$, in principle, A has to set its clock backwards.

Take the measures several times and compute the mean while ignoring outliers.

æ

イロト イヨト イヨト イヨト

Examples: A has to be adjusted to B.

A sends a request to B timestamped with T_1 . B records the time of receipt T_2 (taken from its local clock) and returns a response timestamped with T_3 and piggybacking T_2 . A records the time of arrival T_4 .

The offset θ of A relative to B can be estimated by A:

$$\theta = rac{(T_2 - T_1) + (T_3 - T_4)}{2}$$

(a) No need for adaption detected.

 $T_1 = 10, T_2 = 12, T_3 = 14, T_4 = 16 \Longrightarrow \theta = 0.$

(b) A has to slow down.

 $T_1 = 10, T_2 = 12, T_3 = 14, T_4 = 18 \Longrightarrow \theta = -1.$

(c) A has to hurry up.

 $T_1 = 10, T_2 = 12, T_3 = 14, T_4 = 14 \Longrightarrow \theta = 1.$

白 ト イヨ ト イヨト

On scalability of NTP (roughly)

- NTP is an Internet standard (RFC 5905).
- NTP service is provided by a network of servers.
- Primary servers are directly connected to a UTC-source.
- Secondary servers synchronize themselves with primary servers.
- This approach is applied recursively leading to several layers.
- Server A adjusts itself to server B if B is assigned a lower layer than A.
- The whole network is reconfigurable and thus is able to react on errors.

2.2: Logical Time

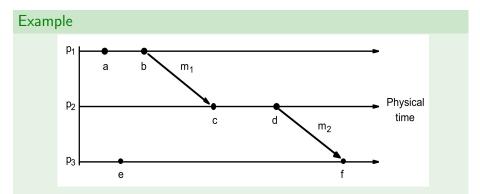
Why?

- Getting physical clocks absolutely synchronized is not possible.
- Thus it is not always possible to determine the order of two events.
- For such cases logical time can be used as a solution.
 - If two events happen in the same process they are ordered as observed.
 - If two processes interchange messages, then the sending event is always considered to be before the receiving event.

Lamport's happened-before relation (causal ordering)

- If two events a, b happen in the same process p_i they are ordered as observed and we write a →_i b.
 Moreover, this implies a → b systemwide.
- If two processes interchange messages, then the sending event *a* is always considered to be before the receiving event *b*, thus $a \rightarrow b$.
- Whenever $a \rightarrow b$ and $b \rightarrow c$, then also $a \rightarrow c$.

Events not being ordered by \rightarrow are called concurrent.



from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

We conclude $a \to b, b \to c, c \to d, d \to f, a \to f$, however not $a \to e$; a, e are concurrent.

イロン イボン イヨン イヨン 三日

Algorithm of Leslie Lamport

- Let $L_i(e)$ denote the time stamp of event e at process P_i .
- When a new event a occurs in process P_i :

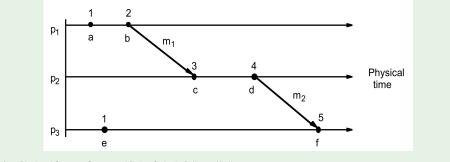
$$L_i := L_i + 1$$

- Each message *m* sent from P_i to P_j is piggybacked by the timestamp $L_i(a)$ of the send-event *a*.
- When (m, t_a) is received by P_j , P_j adjusts its logical clock L_j to the logical clock of P_j .

$$L_j := \max\{L_j, t_a\}$$

and increments L_j for the received message event.

Three clocks with application of Lamport's algorithm.



from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

æ

・ロト ・回ト ・ヨト

Totally ordered logical clocks

- Extend the Lamport clock for each process P_i:
- Clock values must be systemwide unique
 - for this the clock value L_i is referred to with the process id *i*, i.e. (L_i, i)
 - all distinct clocks L_i can be unified into a system clock L.
- Define the total ordering

$$(T_i, i) < (T_j, j)$$
 : \iff $\begin{cases} i < j & \text{if } T_i = T_j \\ T_i < T_j & \text{else} \end{cases}$

So, we translate a partial ordering into a total ordering

• However from the total ordering L(a) < L(b) one cannot conclude $a \rightarrow b$.

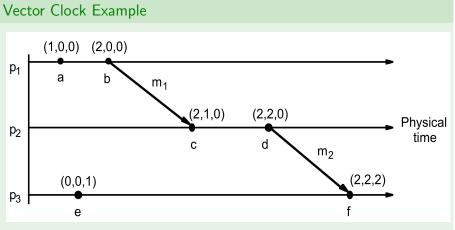
Mattern's Vector Clocks

- Vector clock for a system of n processes: array of n integers.
- Each process P_i keeps its own vector clock V_i which is used to timestamp local events.
- Processes piggyback their own vector clock on messages they send.
- Update rules for vector clocks:
 - VC1: Initially, $V_i[j] := 0$ for $i, j \in \{1, \dots, n\}$
 - VC2: P_i timestamps prior to each event: $V_i[i] := V_i[i] + 1$.
 - VC3: P_i sends the value $t = V_i$ with each message.
 - VC4: When P_i receives some message piggybacked with timestamp t, it sets

 $V_i[j] := max\{V_i[j], t[j]\}$ for i = 1, 2, ..., n

- $V_i[i]$ is the number of events that P_i has timestamped.
- V_i[j] for i ≠ j is the number of events that have occured at P_j to the knowledge of P_i.

イロン イヨン イヨン イヨン



from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer

Э

イロン イヨン イヨン イヨン

Comparing vector timestamps

The clock vectors define a partial ordering

- V = V' iff V[j] = V'[j] for all $j \in \{1, \dots, n\}$
- $V \leq V'$ iff $V[j] \leq V'[j]$ for all $j \in \{1, \ldots, n\}$
- V < V' iff $V \le V' \land V \ne V'$.

If for events a, b neither V(a) ≤ V(b) nor V(a) ≥ V(b) the events are called concurrent, i.e. a||e

Comparing vector timestampsV(a)V(b)Relation(2,1,0)(2,1,0)V(a) = V(b)all entries are the same(1,2,3)(2,3,4)V(a) < V(b)all entries of V are prior to V'(1,2,3)(3,2,1) $a \parallel b$ two events are concurrent

Lamport Relationship and Vector Clocks

Theorem

For any two events e_i , e_i :

$$e_j
ightarrow e_i \iff V(e_j) < V(e_i) \; .$$

Proof sketch

- $\bullet e_j \to e_i \implies V_j < V_i.$
 - If the events occur on the same process then $V_j < V_i$ follow directly.
 - $e_j \rightarrow e_i$ implies a message is sent after e_j to the process with event e_i or two succeeding events of a process
 - Since each entry of the receiving process is updated to the at least the maximum of the entries of the sending processes, V_i < V_i

$$\bullet e_j \to e_i \iff V_j < V_i.$$

- If both events occur on the same process, $e_j \rightarrow e_j$ follows straightforward.
- An increase of the *i*-th row can only be caused by a message path sent from the process of e_i to e_i
- complete proof is left as exercise

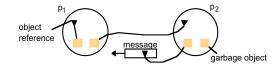
イロト イポト イヨト イヨト

2.3. Global System States

Distributed Garbage Collection

- Non-referenced objects need to be erased
- *p*₂ has an object referenced in a message to *p*₁
- *p*₁ has an object referenced by *p*₂
- Neither one can be erased

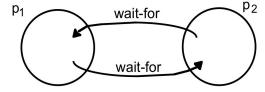
 How to determine a global state in the absence global time



2.3. Global System States

Distributed Deadlock Detection

- occurs when processes wait for each other to send a message
- and the processes form a cycle



<ロ> <同> <同> <同> < 同>

from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

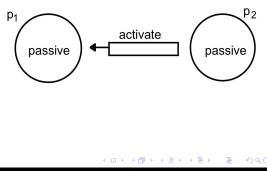
æ

Page 24

2.3. Global System States

Distributed Termination Detection

- How to detect that a distributed algorithm has terminated
- Assume p₁ and p₂ request values from the other
- If they wait for a value they are passive, otherwise active
- Assume both processes are passive. Can we conclude the system has terminated?
- No, since there might be an activating message on its way



2.3. Global System States

Distributed Debugging

- Distributed systems are difficult to debug
- e.g. consider a program where each process has a changing variable x_i
- All variables are required to be in range $|x_i x_j| \le 1$.
- How to be sure that this will never be violated?

3

Cuts

- Consider system \mathcal{P} of *n* processes p_i for $i = 1, \ldots, n$.
- The execution of a process is characterized by its history (of events e_i^t)

$$history(p_i)=h_i=\langle e_i^0,e_i^1,e_i^2,\ldots
angle$$

We denote a finite prefix

$$h_i^k = \langle e_i^0, e_i^1, \ldots, e_i^k \rangle$$

- An event is either
 - an internal action or
 - sending a message or
 - receiving a message
- Let s_i^k denote the state of process p_i immediately before event e_i^k .
- The global history H is

$$H = h_1 \cup h_2 \cup \ldots \cup h_n$$

A cut C of the system's execution is a set of prefaces

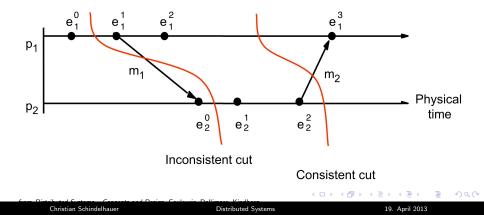
$$C = h_1^{c_1} \cup h_2^{c_2} \cup \ldots \cup h_n^{c_n}$$

Consistent Cuts

A cut C is consistent if,

$$\text{For all events } e \in \mathcal{C}: \quad f \to e \implies f \in \mathcal{C} \ .$$

• i.e. for each event it also contains all the events that happened-before the event.



Global States

- A consistent global state corresponds to a consistent cut.
- A *run* is a total ordering of all events in a global history that is consistent with each local history's ordering $(\rightarrow_i, \text{ for } i = 1, ..., n)$.
- A consistent run (linearization) is an ordering of the events in the global history that is consistent with the happened-before-relation (\rightarrow) on *H*.
- Consistent runs pass only through consistent global states.

Global State Predicates, Stability, Safety and Liveness

- A *global state predicate* is a function that maps from the set of global states to {true,false}.
- *Stability* of a global state predicate: A global state predicate is *stable* if once it has reached true it remains in this state for all states reachable from this state.
- Safety is the assertion that an undesired state predicate evaluates to false to all states S reachable from the starting state S_0 .
- Liveness is the assertion that a desired state predicate evaluates to true to all states S reachable from the starting state S_0 .

How to detect and record a global state

'Snapshot' algorithm of Chandy and Lamport

Goal

- record a set of events corresponding to a global state (consistent cut)
- in a living system during run-time
- without extra process

Requirements

- channels, processes do not fail. Communication is reliable
- channels are uni-directional and have FIFO message delivery
- graph of processes and channels is strongly connected
- any process may initiate a snapshot
- processes continue their execution (including messages)

Notations

- *p_i*'s incoming channel: where all messages for *p_i* arrive
- p_i 's outgoing channel: where p_i sends all messages to other processes
- Marker message: a special message distinct from every other message

Distributed Snapshot of Chandy and Lamport

Marker receiving rule for process p_i

On p_i 's receipt of a *marker* message over channel *c*:

if $(p_i$ has not yet recorded its state) it

records its process state now;

records the state of c as the empty set;

turns on recording of messages arriving over other incoming channels; *else*

 p_i records the state of c as the set of messages it has received over c since it saved its state.

end if

Marker sending rule for process p_i

After p_i has recorded its state, for each outgoing channel c:

 p_i sends one marker message over c

(before it sends any other message over c).

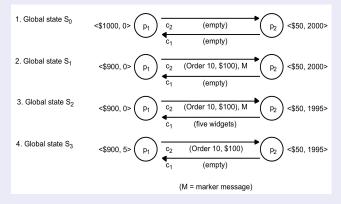
from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

General remarks

A snapshot consists of the state of a process and states of all incoming channels.

- Starting a snapshot:
 - Any process *P* can start a snapshot.
 - 1 Create a local snapshot of *P*'s state.
 - 2 Send marker message over all channels.
 - Upon receipt of a marker message, other processes participate in the snapshot.
- Collecting the snapshot:
 - Every process has created a local snapshot.
 - The local snapshot can be sent to a collector process.
- Terminating a snapshot:
 - If marker message has been received on all channels, the process the snapshot terminates
 - Then the snapshot can be sent to a collector process.

Example



from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

æ

イロト イヨト イヨト イヨト

Termination of the snapshot algorithm

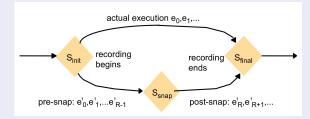
- If marker message has been received on all channels, the process the snapshot terminates
- If the communication graph induced by the messages is strongly connected
- then the marker eventually reaches all nodes
- \blacksquare \Rightarrow only a finite number of messages need to be recorded

The snapshot algorithm selects a Consistent Cut

- Consider two events $e_i \rightarrow e_j$ on processes p_i and p_j
- If *e_j* is in the cut of the snapshot, then *e_i* should be, too
- If e_j occurred before p_j taking its snapshot, then e_i should have occurred before p_i has taking its snapshot
- If $p_i = p_j$ this is obvious.
- Now we consider $p_i \neq p_j$ and assume (*) that e_i is not in the cut and e_j is within the cut.
- Consider messages m_1, m_2, \ldots, m_h causing the happened-before relationship $e_i \rightarrow e_j$.
- So, m_1 must have sent after the snapshot, and m_2 , and so forth. Each of this messages must have been sent after the marker message occurred on each channel (because of FIFO rules on the channel).
- Then, e_j cannot be in the cut. This contradicts (*) and proofs the claim.

イロト イポト イヨト イヨト

Reachability of the snapshot algorithm selects a Consistent Cut



from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

- A snapshot characterizes events into two types
 - 1 pre-snap: An event happening before marking the corresponding process
 - 2 post-snap: An event happening after marking
- Note that pre-snap events can take place after post-snap events
- It is impossible that $e_i \rightarrow e_j$ if e_i is a post-snap event and e_j is a pre-snap event

イロト イポト イヨト イヨト

Distributed Debugging

Goal of algorithm of Marzullo and Neiger

- Testing properties post-hoc, e.g. safety conditions
- Capture traces rather than snapshots
- Gathered by a monitoring process (outside the system)
- How are process states collected
- How to extract consistent global states
- How to evaluate safety, stability and liveness conditions

Distributed Debugging

Temporal operators

Consider all linearizations of H

 $\begin{array}{ll} {\color{black} {o} \ possible \ \phi } & \text{There exists a consistent global state S through a linearization such that $\phi(S)$ is true. \\ {\color{black} {o} \ definitely \ \phi } & \text{For all linearizations a consistent global state will be passed such that $\phi(S)$ is true. } \end{array}$

3

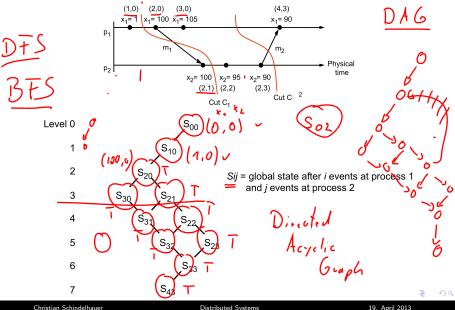
Relationship of Definitely and Possibly

1 $\forall S \in H : \phi(S) \implies definitely \phi$ **2** $\forall S \in H : \phi(S) \implies possible \phi$ **3** $\forall S \in H : \neg \phi(S) \implies \neg definitely \phi$ **4** $\forall S \in H : \neg \phi(S) \implies \neg possibly \phi$ **5** $definitely \phi \implies possibly \phi$ **6** $\neg possibly \phi \implies definitely \neg \phi$ **7** $definitely \neg \phi \implies \neg possibly \phi$

3

< 🗇 > < 🖃 >

Distributed Debugging: Definitely $|x_1 - x_2| \leq 50$



19. April 2013

Algorithm of Marzullo & Neiger

Collecting the states

- 6 All initial states are sent to the monitor
- All state changes are sent to the monitor
- ${\ensuremath{\,\bullet\)}}$ If only a predicate is monitored ϕ then only states are sent where ϕ changes
- With the states the corresponding vector clock is sent to the monitor
- The vector clocks will be used to establish the \rightarrow -relationship
- The monitor computes the DAG corresponding to the happened-before-relationship
- Arrange the graph in levels L = 0, 1, ... such that no global state in level happened before a state in lower level.
- In Level 0 there is only the initial state.

1. Evaluating possibly ϕ for global history H of N processes L := 0; $States := \{ (s_1^0, s_2^0, ..., s_N^0) \};$ while $(\phi(S) = False$ for all $S \in States$) L := L + 1;Reachable := $\{ S': S' \text{ reachable in } H \text{ from some } S \in States \land \text{level}(S') = L \};$ States := Reachableend while output "possibly ϕ ";

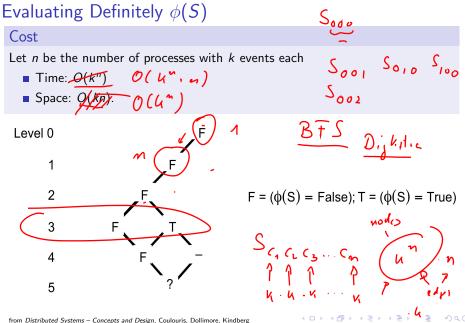
from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

イロト イヨト イヨト イヨト

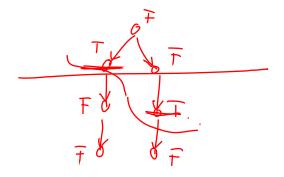
3

2. Evaluating definitely ϕ for global history H of N processes **->** L := 0; **->** $if(\phi(s_1^0, s_2^0, ..., s_N^0))$ then States := {} else States := { $(s_1^0, s_2^0, ..., s_N^0)$ }; while (States \neq {}) **->** L := L + 1;Reachable := {S': S' reachable in H from some $S \in$ States \land level(S') = L}; States := { $S \in$ Reachable : $\phi(S) =$ False } end while output "definitely ϕ ";

from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg



from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg



End of Section 2

Christian Schindelhauer

Distributed Systems

19. April 2013

æ

・ロ・・ (日・・ (日・・ (日・)