
2. Time and Global States Page 1

University of Freiburg, Germany
Department of Computer Science

Distributed Systems

Chapter 2 Time and Global States

Christian Schindelhauer

19. April 2013

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States Page 2

2: Time and Global States

How can distributed processes be coordinated and synchronized, e.g.

when accessing shared resources,

when determining the order of triggered events?

The importance of time

Distributed systems do not have only one clock.

Clocks on different machines are likely to differ.

Physical versus logical time.

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.1. Physical Time Page 3

2.1: Physical Time

Example; distributed software development using UNIX make

Computer sets its clock back after compiling a source file

User edits the source file

make assumes the source file has not been changed since compilation

make will not recompile

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.1. Physical Time Page 4

TAI and UTC

International Atomic Time TAI: mean number of ticks of caesium 133
clocks since midnight Jan. 1, 1958 divided by number of ticks per second
9,192,631,770.

Problem: 86,400 TAI seconds (corresponding to a day) are today 3 msec
less than a mean solar day (because solar days are getting longer because
of tidal forces).

Solution: whenever discrepancy between TAI and solar time grows to 800
msec a leap second is added to solar time.

The corresponding time is called Universal Coordinated Time UTC.

UTC is broadcast every second as a short pulse by the National Institute of
Standard Time NIST. It is broadcast by GPS as well.

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.1. Physical Time Page 5

Time in distributed systems

Each computer p is equipped with a local clock Cp, which causes H
interrupts per second. Given UTC time t, the clock value of p is given by
Cp(t).

Let C ′p(t) =
dCp

dt

Ideally, C ′p(t) = 1, real clocks have an error of about ±10−5 (10 ppm)

If there exists some constant ρ such that

1− ρ ≤ dC

dt
≤ 1 + ρ,

ρ is called the maximum drift rate.

If synchronized ∆t ago, two clocks may differ at most by 2ρ∆t.

To ensure synchronization within precision δ, then they need to be
synchronized at least every δ

2ρ seconds.

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.1. Physical Time Page 6

Network Time Protocol NTP

Assumption, one system C is connected to a UTC server. This system is
called time-server.

Each machine C , every δ
2ρ seconds, sends a time request to the

time-server, which immediately responds with the current UTC.

machine C sets its time to be T3,

where T is the received time
RTT is the round trip time

Time Server

Client T1

T2 T3

T4time

request
message

answer
message

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.1. Physical Time Page 7

Problems and solutions

Problem: time may run backwards!

Solution: clocks converge to the correct time.

Problem: Because of message delays, reported time will be outdated when
received by a client.

Solution: Try to find a good estimation for the delay.

. . . (next slide)

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.1. Physical Time Page 8

Problems and solutions

Problem: Because of message delays, reported time will be outdated when
received by a client.

Solution: Try to find a good estimation for the delay.

Algorithm of Flaviu Cristian
Use (T4−T1)

2
if no other information is available.

If interrupt handling time I is known, use (T4−T1−I)
2

.
. . . else . . .

Time Server

Client T1

T2 T3

T4time

request
message

answer
message

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.1. Physical Time Page 9

Problems and solutions

Problem: Because of message delays, reported time will be outdated when
received by a client.

Solution: Try to find a good estimation for the delay
NTP: Network Time Protocol

. . . else . . .
To adjust A to B, use piggybacking:
A sends a request to B timestamped with T1.
B records the time of receipt T2 (taken from its local clock) and returns a
response timestamped with T3 and piggybacking T2.
A records the time of arrival T4. The propagation time from A to B is
assumed to be the same as from B to A, T2 − T1 ≈ T4 − T3.
The offset θ of A relative to B can be estimated by A:

θ = T3 +
(T2 − T1) + (T4 − T3)

2
− T4 =

(T2 − T1) + (T3 − T4)

2

If θ < 0, in principle, A has to set its clock backwards.

Take the measures several times and compute the mean while ignoring outliers.

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.1. Physical Time Page 10

Examples: A has to be adjusted to B .

A sends a request to B timestamped with T1. B records the time of receipt T2 (taken
from its local clock) and returns a response timestamped with T3 and piggybacking
T2. A records the time of arrival T4.
The offset θ of A relative to B can be estimated by A:

θ =
(T2 − T1) + (T3 − T4)

2

(a) No need for adaption detected.

T1 = 10,T2 = 12,T3 = 14,T4 = 16 =⇒ θ = 0.

(b) A has to slow down.

T1 = 10,T2 = 12,T3 = 14,T4 = 18 =⇒ θ = −1.

(c) A has to hurry up.

T1 = 10,T2 = 12,T3 = 14,T4 = 14 =⇒ θ = 1.

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.1. Physical Time Page 11

On scalability of NTP (roughly)

NTP is an Internet standard (RFC 5905).

NTP service is provided by a network of servers.

Primary servers are directly connected to a UTC-source.

Secondary servers synchronize themselves with primary servers.

This approach is applied recursively leading to several layers.

Server A adjusts itself to server B if B is assigned a lower layer than A.

The whole network is reconfigurable and thus is able to react on errors.

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.2. Logical Time Page 12

2.2: Logical Time

Why?

Getting physical clocks absolutely synchronized is not possible.

Thus it is not always possible to determine the order of two events.

For such cases logical time can be used as a solution.

If two events happen in the same process they are ordered as observed.
If two processes interchange messages, then the sending event is always
considered to be before the receiving event.

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.2. Logical Time Page 13

Lamport’s happened-before relation (causal ordering)

If two events a, b happen in the same process pi they are ordered as
observed and we write a→i b.
Moreover, this implies a→ b systemwide.

If two processes interchange messages, then the sending event a is always
considered to be before the receiving event b, thus a→ b.

Whenever a→ b and b → c , then also a→ c .

Events not being ordered by → are called concurrent.

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.2. Logical Time Page 14

Example

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

We conclude a→ b, b → c , c → d , d → f , a→ f , however not a→ e; a, e are
concurrent.

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.2. Logical Time Page 15

Algorithm of Leslie Lamport

Let Li (e) denote the time stamp of event e at process Pi .

When a new event a occurs in process Pi :

Li := Li + 1

Each message m sent from Pi to Pj is piggybacked by the timestamp Li (a)
of the send-event a.

When (m, ta) is received by Pj , Pj adjusts its logical clock Lj to the logical
clock of Pj .

Lj := max{Lj , ta}

and increments Lj for the received message event.

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.2. Logical Time Page 16

Three clocks with application of Lamport’s algorithm.

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.2. Logical Time Page 17

Totally ordered logical clocks

Extend the Lamport clock for each process Pi :

Clock values must be systemwide unique

for this the clock value Li is referred to with the process id i , i.e. (Li , i)
all distinct clocks Li can be unified into a system clock L.

Define the total ordering

(Ti , i) < (Tj , j) :⇐⇒

{
i < j if Ti = Tj

Ti < Tj else

So, we translate a partial ordering into a total ordering

However from the total ordering L(a) < L(b) one cannot conclude a→ b.

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.2. Logical Time Page 18

Mattern’s Vector Clocks

Vector clock for a system of n processes: array of n integers.

Each process Pi keeps its own vector clock Vi which is used to timestamp local
events.

Processes piggyback their own vector clock on messages they send.

Update rules for vector clocks:

VC1: Initially, Vi [j] := 0 for i , j ∈ {1, . . . , n}
VC2: Pi timestamps prior to each event: Vi [i] := Vi [i] + 1.
VC3: Pi sends the value t = Vi with each message.
VC4: When Pi receives some message piggybacked with timestamp t, it sets

Vi [j] := max{Vi [j], t[j]} for i = 1, 2, . . . , n

Vi [i] is the number of events that Pi has timestamped.

Vi [j] for i 6= j is the number of events that have occured at Pj to the knowledge
of Pi .

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.2. Logical Time Page 19

Vector Clock Example

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.2. Logical Time Page 20

Comparing vector timestamps

The clock vectors define a partial ordering

V = V ′ iff V [j] = V ′[j] for all j ∈ {1, . . . , n}
V ≤ V ′ iff V [j] ≤ V ′[j] for all j ∈ {1, . . . , n}
V < V ′ iff V ≤ V ′ ∧ V 6= V ′.

If for events a, b neither V (a) ≤ V (b) nor V (a) ≥ V (b) the events are
called concurrent, i.e. a||e

Comparing vector timestamps

V (a) V (b) Relation

(2, 1, 0) (2, 1, 0) V (a) = V (b) all entries are the same

(1, 2, 3) (2, 3, 4) V (a) < V (b) all entries of V are prior to V ′

(1, 2, 3) (3, 2, 1) a || b two events are concurrent

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.2. Logical Time Page 21

Lamport Relationship and Vector Clocks

Theorem
For any two events ej , ei :

ej → ei ⇐⇒ V (ej) < V (ei) .

Proof sketch

ej → ei =⇒ Vj < Vi .

If the events occur on the same process then Vj < Vi follow directly.
ej → ei implies a message is sent after ej to the process with event ei or two
succeeding events of a process
Since each entry of the receiving process is updated to the at least the
maximum of the entries of the sending processes, Vj < Vi

ej → ei ⇐= Vj < Vi .

If both events occur on the same process, ej → ej follows straightforward.
An increase of the i-th row can only be caused by a message path sent from
the process of ej to ei

complete proof is left as exercise

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 22

2.3. Global System States

Distributed Garbage
Collection

Non-referenced objects
need to be erased

p2 has an object referenced
in a message to p1

p1 has an object referenced
by p2

Neither one can be erased

How to determine a global state
in the absence global time

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 23

2.3. Global System States

Distributed Deadlock
Detection

occurs when processes wait
for each other to send a
message

and the processes form a
cycle

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 24

2.3. Global System States

Distributed Termination
Detection

How to detect that a
distributed algorithm has
terminated

Assume p1 and p2 request
values from the other

If they wait for a value
they are passive, otherwise
active

Assume both processes are
passive. Can we conclude
the system has terminated?

No, since there might be
an activating message on
its way

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, KindbergChristian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 25

2.3. Global System States

Distributed Debugging

Distributed systems are difficult to debug

e.g. consider a program where each process has a changing variable xi

All variables are required to be in range |xi − xj | ≤ 1.

How to be sure that this will never be violated?

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 26

Cuts

Consider system P of n processes pi for i = 1, . . . , n.

The execution of a process is characterized by its history (of events et
i)

history(pi) = hi = 〈e0
i , e

1
i , e

2
i , . . .〉

We denote a finite prefix
hk

i = 〈e0
i , e

1
i , . . . , e

k
i 〉

An event is either

an internal action or
sending a message or
receiving a message

Let sk
i denote the state of process pi immediately before event ek

i .

The global history H is
H = h1 ∪ h2 ∪ . . . ∪ hn

A cut C of the system’s execution is a set of prefaces

C = hc1
1 ∪ hc2

2 ∪ . . . ∪ hcn
n

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 27

Consistent Cuts

A cut C is consistent if,

For all events e ∈ C : f → e =⇒ f ∈ C .

i.e. for each event it also contains all the events that happened-before the event.

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 28

Global States

A consistent global state corresponds to a consistent cut.

A run is a total ordering of all events in a global history that is consistent with
each local history’s ordering (→i , for i = 1, . . . , n).

A consistent run (linearization) is an ordering of the events in the global history
that is consistent with the happened-before-relation (→) on H.

Consistent runs pass only through consistent global states.

Christian Schindelhauer Distributed Systems 19. April 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

2. Time and Global States 2.3. Global States Page 29

Global State Predicates, Stability, Safety and Liveness

A global state predicate is a function that maps from the set of global states to
{true, false}.
Stability of a global state predicate: A global state predicate is stable if once it
has reached true it remains in this state for all states reachable from this state.

Safety is the assertion that an undesired state predicate evaluates to false to all
states S reachable from the starting state S0.

Liveness is the assertion that a desired state predicate evaluates to true to all
states S reachable from the starting state S0.

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 30

How to detect and record a global state

’Snapshot’ algorithm of Chandy and Lamport

Goal

record a set of events corresponding to a global state (consistent cut)
in a living system during run-time
without extra process

Requirements

channels, processes do not fail. Communication is reliable
channels are uni-directional and have FIFO message delivery
graph of processes and channels is strongly connected
any process may initiate a snapshot
processes continue their execution (including messages)

Notations

pi ’s incoming channel: where all messages for pi arrive
pi ’s outgoing channel: where pi sends all messages to other processes
Marker message: a special message distinct from every other message

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 31

Distributed Snapshot of Chandy and Lamport

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 32

General remarks

A snapshot consists of the state of a process and states of all incoming channels.

Starting a snapshot:
Any process P can start a snapshot.

1 Create a local snapshot of P’s state.
2 Send marker message over all channels.

Upon receipt of a marker message, other processes participate in the
snapshot.

Collecting the snapshot:

Every process has created a local snapshot.
The local snapshot can be sent to a collector process.

Terminating a snapshot:

If marker message has been received on all channels, the process the
snapshot terminates
Then the snapshot can be sent to a collector process.

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 33

Example

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 34

Termination of the snapshot algorithm

If marker message has been received on all channels, the process the
snapshot terminates

If the communication graph induced by the messages is strongly connected

then the marker eventually reaches all nodes

⇒ only a finite number of messages need to be recorded

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 35

The snapshot algorithm selects a Consistent Cut

Consider two events ei → ej on processes pi and pj

If ej is in the cut of the snapshot, then ei should be, too

If ej occurred before pj taking its snapshot, then ei should have occurred
before pi has taking its snapshot

If pi = pj this is obvious.

Now we consider pi 6= pj and assume (*) that ei is not in the cut and ej is
within the cut.

Consider messages m1,m2, . . .mh causing the happened-before relationship
ei → ej .

So, m1 must have sent after the snapshot, and m2, and so forth. Each of
this messages must have been sent after the marker message occurred on
each channel (because of FIFO rules on the channel).

Then, ej cannot be in the cut. This contradicts (*) and proofs the claim.

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 36

Reachability of the snapshot algorithm selects a Consistent Cut

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

A snapshot characterizes events into two types

1 pre-snap: An event happening before marking the corresponding process
2 post-snap: An event happening after marking

Note that pre-snap events can take place after post-snap events

It is impossible that ei → ej if ei is a post-snap event and ej is a pre-snap
event

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 37

Distributed Debugging

Goal of algorithm of Marzullo and Neiger

Testing properties post-hoc, e.g. safety conditions

Capture traces rather than snapshots

Gathered by a monitoring process (outside the system)

How are process states collected

How to extract consistent global states

How to evaluate safety, stability and liveness conditions

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 38

Distributed Debugging

Temporal operators

Consider all linearizations of H

possible φ There exists a consistent global state S through
a linearization such that φ(S) is true.

definitely φ For all linearizations a consistent global state will
be passed such that φ(S) is true.

Christian Schindelhauer Distributed Systems 19. April 2013

schindel
Bleistift

schindel
Bleistift

2. Time and Global States 2.3. Global States Page 39

Relationship of Definitely and Possibly

1 ∀S ∈ H : φ(S) =⇒ definitely φ

2 ∀S ∈ H : φ(S) =⇒ possible φ

3 ∀S ∈ H : ¬φ(S) =⇒ ¬definitely φ

4 ∀S ∈ H : ¬φ(S) =⇒ ¬possibly φ

5 definitely φ =⇒ possibly φ

6 ¬possibly φ =⇒ definitely ¬φ
7 definitely ¬φ 6=⇒ ¬possibly φ

Christian Schindelhauer Distributed Systems 19. April 2013

2. Time and Global States 2.3. Global States Page 40

Distributed Debugging: Definitely |x1 − x2| ≤ 50

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
Christian Schindelhauer Distributed Systems 19. April 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

2. Time and Global States 2.3. Global States Page 41

Algorithm of Marzullo & Neiger

Collecting the states

All initial states are sent to the monitor

All state changes are sent to the monitor

If only a predicate is monitored φ then only states are sent where φ changes

With the states the corresponding vector clock is sent to the monitor

The vector clocks will be used to establish the →-relationship

The monitor computes the DAG corresponding to the
happened-before-relationship

Arrange the graph in levels L = 0, 1, . . . such that no global state in level
happened before a state in lower level.

In Level 0 there is only the initial state.

Christian Schindelhauer Distributed Systems 19. April 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

2. Time and Global States 2.3. Global States Page 42

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 19. April 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

2. Time and Global States 2.3. Global States Page 43

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 19. April 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

2. Time and Global States 2.3. Global States Page 44

Evaluating Definitely φ(S)

Cost

Let n be the number of processes with k events each

Time: O(kn)

Space: O(kn).

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 19. April 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

2. Time and Global States 2.3. Global States Page 45

End of Section 2

Christian Schindelhauer Distributed Systems 19. April 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

	Time and Global States
	Physical Time
	Logical Time
	Global States

