University of Freiburg, Germany
Department of Computer Science

Distributed Systems

Chapter 4 Coordination and Agreement

Christian Schindelhauer

05. May 2013
4.1: Introduction

- Coordination in the absence of master-slave relationship
- Failures and how to deal with it
- Distributed mutual exclusion
- Agreement is a complex problem
- Multicast communication
- Byzantine agreement

Assumptions

- Channels are reliable
- The network remains connected
- Process failures are not a threat to the communication
- Processes only fail by crashing
Failure Detectors

- Failure detector is a service answer queries about the failures of other processes
- Most failure detectors are *unreliable failure detectors*
 - Returning either *suspected* or *unsuspected*
 - *suspected*: some indication of process failure
 - *unsuspected*: no evidence for process failure

- **Reliable failure detector**
 - Returning either *failed* or *unsuspected*
 - *failed*: detector has determined that the process has failed
 - *unsuspected*: no evidence for failure

Example of an unreliable failure detector

- Each process \(p \) sends a ‘p is here’ message to every other process every \(T \) seconds
- If the message does not arrive within \(T + D \) seconds then the process is reported as *Suspected*
4.2: Distributed Mutual Exclusion

- Problem known from operating systems (there: *critical sections*)
- How to achieve mutual exclusion only with messages

Application-Level Protocol

- **enter()**: enter critical section – block if necessary
- **resourceAccesses()**: access shared resources in critical section
- **exit()**: leave critical section – other processes may enter

Essential Requirements

- **ME1: Safety**: At most one process may execute the critical section at a time
- **ME2: Liveness**: Requests to enter and exit the critical section eventually succeed
- **ME3: → ordering**: requests enter the critical section according to the *happened-before* relationship
Performance of algorithms for mutual exclusion

- **Bandwidth** consumed: proportional to the number of messages sent in each *entry* and *exit* operation
- *Client delay* at each *entry* and *exit* operation
- **Throughput** rate of several processes entering the critical section
- Throughput is measured by the *synchronization delay* between one process exiting the critical section and the next process entering it
- Short *synchronization delay* correspond to high *throughput*
Central Server Algorithm

- Simplest solution ✓
- Request are handled by queues ✓
- Performance
 - Entering the critical section: two messages (*request*, *grant*)
 - Leaving the critical section: one message (*release*)
- Server is performance bottleneck
Ring Based Algorithm

- Simplest distributed solution
- Arrange processes as ring (not related to physical network)
- A token (permission to enter critical section) is passed around
- Conditions ME1 (safety) and ME2 (liveness) are met
- ME3: → ordering is not fulfilled
- Continuous consumption of bandwidth
- Synchronisation delay is between 1 and \(n \) messages.

from *Distributed Systems – Concepts and Design*, Coulouris, Dollimore, Kindberg
The Algorithm of Ricart and Agrawala

- Mutual exclusion between \(n \) peer processes \(p_1, p_2, \ldots, p_n \) which
 - have unique numeric identifiers
 - possess communication channels to one another
 - keep Lamport clocks attached to the messages

- Process states
 - released: outside the critical section
 - wanted: wanting to enter critical section
 - held: being in the critical section

- Each process released immediately answers a request to enter the critical section
- The process with held does not reply to requests until it is finished
- If more than one process requests the entry, the first one collecting the \(n - 1 \) replies is allowed to enter the critical section.
- If the Lamport clocks of the latest messages do not differ, the numeric ID is used to break the tie.
The Algorithm of Ricart and Agrawala

On initialization

\[\text{state} := \text{RELEASED}; \]

To enter the section

\[\text{state} := \text{WANTED}; \]

Multicast request to all processes;

\[T := \text{request’s timestamp}; \]

Wait until (number of replies received = (N – 1));

\[\text{state} := \text{HELD}; \]

request processing deferred here

_On receipt of a request \(<T_i, p_j> \) at \(p_j \) (i ≠ j)_

if \(\text{(state = HELD or (state = WANTED and (T, p_j) < (T_i, p_i)))} \)

then

queue request from \(p_i \) without replying;

else

reply immediately to \(p_i \);

end if

To exit the critical section

\[\text{state} := \text{RELEASED}; \]

reply to any queued requests;

from _Distributed Systems – Concepts and Design_, Coulouris, Dollimore, Kindberg
The Algorithm of Ricart and Agrawala

- Mutual exclusion properties
 - ME1 (safety): processes in state `held` prevent other ones from entering the CS
 - ME2 (liveness): follows from the ordering
 - ME3 (ordering): follows from the use of Lamport clocks

- Cost of gaining access: \(2(n - 1)\) messages
 - \(n - 1\) for multicast of request
 - \(n - 1\) for replies

- Client delay for requesting entry: a round-trip message

- Synchronization delay is one message transmission time
Maekawa’s Voting algorithm

- Reduce the number of messages by asking a subset
- For each process p_i choose a voting set V_i such that
 1. $p_i \in V_i$
 2. $V_i \cap V_j \neq \emptyset$ for all i,j
 3. $|V_i| = k$ for all i (fairness)
 4. Each process occurs in at most m voting sets
- Minimal choice of $\max\{m, k\}$ is k, $m \in \Theta(\sqrt{n})$.
- The optimal solution can be approximated by placing all nodes in a square matrix and choosing the row and column as voting set.

Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
Maekawa’s Voting algorithm

On initialization

\[\text{state} := \text{RELEASED}; \]
\[\text{voted} := \text{FALSE}; \]

For \(p_i \) to enter the critical section

\[\text{state} := \text{WANTED}; \]
Multicast request to all processes in \(V_i \);
Wait until (number of replies received = \(K \));
\[\text{state} := \text{HELD}; \]

On receipt of a request from \(p_i \) at \(p_j \)
if (state = HELD or voted = TRUE)
then
queue request from \(p_i \) without replying;
else
send reply to \(p_i \);
\[\text{voted} := \text{TRUE}; \]
end if

For \(p_i \) to exit the critical section

\[\text{state} := \text{RELEASED}; \]
Multicast release to all processes in \(V_i \);

On receipt of a release from \(p_i \) at \(p_j \)
if (queue of requests is non-empty)
then
remove head of queue – from \(p_k \), say;
send reply to \(p_k \);
\[\text{voted} := \text{TRUE}; \]
else
\[\text{voted} := \text{FALSE}; \]
end if
Maekawa’s Voting algorithm

- Mutual exclusion properties
 - ME1 (safety): follows from the intersections of V_i and V_j
 - ME2 (liveness): not guaranteed.

- Sanders improved this algorithm to achieve ME2 and ME3 (not presented here)

- Cost
 - $2k$ per entry to the critical section
 - k for exit
 - $O(\sqrt{n})$ messages

- Client delay for requesting entry: a round-trip message
- Synchronization delay is a round-trip message
Mutual Exclusion

Fault Tolerance

- What happens when messages are lost
- What happens when process crashes

- All of the above algorithms presented fail
- We will revisit this problem
4.3: Elections

Election Algorithm

- An algorithm for choosing a unique process from a set of processes p_1, \ldots, p_n.
- A process *calls the election* if it initiates a run of an election algorithm.
- Several elections could run in parallel where subset of processes are *participants* or *non-participants*.
- We assume processes have numeric IDs and that wlog. the process with the highest will be chosen.

Requirements

<table>
<thead>
<tr>
<th>E1: Safety</th>
<th>During the run each participant has either elected(i = \bot) or elected(i = P), where (P) is the non-crashed process with the largest ID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2: Liveness</td>
<td>All participating processes p_i eventually set elected(i \neq \bot) or crash.</td>
</tr>
</tbody>
</table>
Ring-Based Election: Algorithm of Chang and Roberts

- Each process p_i has a communication channel to the next process in the ring $p_{(i+1) \mod n}$
- Messages are sent clockwise
- Assumption: no failures occur
- Non-participants are marked
- When a process receives an election message, it compares the identifier
 - If the arrived ID is greater, it forwards it
 - if the arrived ID is smaller and the process participates, it replaces it with its ID
 - if the arrived ID equals the process ID, the process is elected and sends an elected message around (with its ID).

Note: The election was started by process 17. The highest process identifier encountered so far is 24. Participant processes are shown darkened.
Ring-Based Election: Algorithm of Chang and Roberts

- E1 (Safety): follows directly
- E2 (Liveness): follows in the absence of crashes and communication errors
- Worst-case performance if a single node participates in the process
- Time: $3n - 1$ messages for the election
- Not very practical algorithm fault-prone and high communication overhead
- Assumes a-priori knowledge (ring topology)

Note: The election was started by process 17. The highest process identifier encountered so far is 24. Participant processes are shown darkened.
The Bully Algorithm of Garcia & Molina

- The distributed system is assumed to be synchronous
 - i.e. after a timeout period T a missing answer is interpreted as crash
 - reliable failure detector
 - fail-stop model

- Message types
 - $election$: Announces an election
 - $answer$: Answers $election$ message (contains ID)
 - $coordinator$: Announces the identity of the elected process

- Any process may trigger an $election$

- Every process receiving an $election$ messages sends an $answer$ and starts a new one (if it has not started one before).

- If a process knows it has the highest ID (based on the answers) it sends the $coordinator$ message to all processes

- If answers of lower IDs fail to arrive within time T the sender considers itself a coordinator and sends the $coordinator$ message
The Bully Algorithm of Garcia & Molina

- If a process receives an *election* message it sends back an *answer* message and begins another election — if it has not begun an election.

- If a process knows it has the highest ID it sends the *coordinator* message.

- New arriving processes with higher ID „bully“ existing coordinators.
The Bully Algorithm of Garcia & Molina

- E2: liveness condition is guaranteed if messages are transmitted reliably
- E1: safety condition: Not guaranteed if processes are replaced by processes with the same identifier
- different conclusions on which is the coordinator process
- E1 not guaranteed if the timeout value is too small
- In the worst case the algorithm needs $O(n^2)$ messages for n processes
4.4: Multicast communication

- With a single call of $\text{multicast}(g, m)$ a process sends a message to all members of the group g
- Using $\text{deliver}(m)$, received messages are delivered on participating processes
- **Efficiency**
 - Number of messages, transmission time
- **Delivery guarantees**
 - ordering
 - receipt
 - e.g. IP Multicast does not guarantee ordering of success
4.4: Multicast communication

- **System Model**
 - $\text{multicast}(g, m)$: sends the message m to all members of group g
 - $\text{deliver}(m)$: delivers a message to the process (message has been received by lower level)
 - $\text{sender}(m)$: sender of a message m (within the message header)
 - $\text{group}(m)$: group of a message m (within the message header)

- **Allowed senders**
 - closed group: senders must be members of a group
 - open group: any process can send a message to the group
Basic Multicast

- B-multicast(g,m): for each process $p \in g$, send(p,m)
- B-deliver(m): if message m is received at p return the message m

Ack Implosion

- if too many processes participate
- if $send$ uses acknowledgments, some of them could be dropped
- then the messages could be retransmitted
- further $acks$ are lost due to full buffers etc.
Reliable Multicast

- **Safety: Integrity**
 - Every message is delivered at most once
 - Receiver of m is a member of $\text{group}(m)$
 - Sender has initiated a $\text{multicast}(g, m)$

- **Liveness: Validity**
 - If a correct process multicasts a messages then it eventually delivers m (to itself)

- **Agreement**
 - If a correct process delivers m then all other processes eventually deliver m
Implementing Reliable Multicast over Basic Multicast

On initialization

\[Received := \{ \}; \]

For process \(p \) to \(R \)-multicast message \(m \) to group \(g \)

\[B\text{-multicast}(g, m); \quad // \; p \in g \text{ is included as a destination} \]

On \(B\text{-deliver}(m) \) at process \(q \) with \(g = \text{group}(m) \)

\[\text{if } (m \notin Received) \]
\[\quad \text{then} \]
\[\quad \quad Received := Received \cup \{ m \}; \]
\[\quad \quad \text{if } (q \neq p) \text{ then } B\text{-multicast}(g, m); \text{ end if} \]
\[\quad \text{end if} \]
\[R\text{-deliver } m; \]

Each message needs to be sent \(|g|\) times!
Implementing Reliable Multicast over IP Multicast

- R-multicast(g, m) for sending process p
 - Sender increments a (sending) sequence number S_g^p for group g after each message
 - Sequence number sent with message
 - Acknowledgements of all received messages with $\langle q, R_q^g \rangle$ are piggy backed with message
 - Negative Acknowledgments: by received sequence number R_q^g causes retransmission of message

- R-deliver(g) for receiving process q
 - R_q^g is the sequence number of the latest message it has delivered.
 - it is send with each acknowledgment and allows the sender (and all receivers) to learn about missing messages
 - Process q delivers a message m (with piggy backed S) only if $S = R_q^g + 1$.
 - messages with $S > R_q^g + 1$ are kept in a hold-back queue
 - messages with $S < R_q^g + 1$ are erased
 - After delivery $R_q^g := R_q^g + 1$
Hold-Back Queue for Arriving Multicast Messages

![Diagram showing the hold-back queue and delivery process]

- **Incoming messages**
- **Hold-back queue**
- **Delivery queue**
- **Message processing**
- **deliver**
- **When delivery guarantees are met**
Ordered Multicast

- **FIFO Ordering**
 - If a process casts \(\text{multicast}(g, m) \) before \(\text{multicast}(g, m') \)
 - then \(m \) is delivered before \(m' \)
 - in each process of group \(g \)

- **Causal Ordering**:
 - If \(\text{multicast}(g, m) \rightarrow \text{multicast}(g, m') \)
 - then \(m \) is delivered before \(m' \)
 - \(\rightarrow \) is based only on messages within the group \(g \)

- **Total Ordering**:
 - If a process delivers \(m \) before \(m' \)
 - then \(m \) is delivered before \(m' \) on any other process of \(g \)
Total, FIFO and Causal Ordering

- **Total Ordering**

- **FIFO Ordering**

- **Causal Ordering**
Bulletin Board

<table>
<thead>
<tr>
<th>Item</th>
<th>From</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>A.Hanlon</td>
<td>Mach</td>
</tr>
<tr>
<td>24</td>
<td>G.Joseph</td>
<td>Microkernels</td>
</tr>
<tr>
<td>25</td>
<td>A.Hanlon</td>
<td>Re: Microkernels</td>
</tr>
<tr>
<td>26</td>
<td>T.L’Heureux</td>
<td>RPC performance</td>
</tr>
<tr>
<td>27</td>
<td>M.Walker</td>
<td>Re: Mach</td>
</tr>
</tbody>
</table>

- **FIFO Ordering**
- **Causal Ordering**
- **Total Ordering**
Implementing FIFO Ordering Multicast

- Use sequence numbers for each message
 - S^p_g for each sender process p and group g
 - R^p_g for the last message delivered to process p of group g

- Multicast over IP Multicast satisfies FIFO ordering

- Essential components for FIFO ordering:
 - Sender piggybacks S^p_g on the message
 - Receiver checks whether received message satisfies $S = R^q_g + 1$
 - and delivers m and sets $R^q_g := R^q_g + 1$.
 - if $S > R^q_g + 1$ it puts m into the hold-back queue

- In combination of a reliable multicast we obtain a reliable FIFO ordering multicast algorithm
Implementing Total Ordering Multicast with a Sequencer

1. Algorithm for group member \(p \)

\[\text{On initialization: } r_g := 0; \]

To TO-multicast message \(m \) to group \(g \)

\[B\text{-multicast}(g \cup \{ \text{sequencer}(g) \}, <m, i>); \]

\[\text{On } B\text{-deliver}(<m, i>) \text{ with } g = \text{group}(m) \]

Place \(<m, i>\) in hold-back queue;

\[\text{On } B\text{-deliver}(m_{\text{order}} = \text{{"order"}, } i, S>) \text{ with } g = \text{group}(m_{\text{order}}) \]

wait until \(<m, i>\) in hold-back queue and \(S = r_g \);

\[\text{TO-deliver } m; \quad // \text{(after deleting it from the hold-back queue)} \]

\[r_g = S + 1; \]

2. Algorithm for sequencer of \(g \)

\[\text{On initialization: } s_g := 0; \]

\[\text{On } B\text{-deliver}(<m, i>) \text{ with } g = \text{group}(m) \]

\[B\text{-multicast}(g, \text{{"order"}, } i, s_g>); \]

\[s_g := s_g + 1; \]
Implementing Total Ordering Multicast using ISIS

- Used in the ISIS toolkit of Birman & Joseph
- Each participating process proposes a sequence number for a message:
 - All proposed message numbers are unique
 - The sender chooses the maximum of all proposals and sends this information (piggy backed with the next messages)
 - This agreed sequence number defines the ordering of the hold-back-queue
 - The smallest elements of the hold-back queue can be delivered as the first element
- Does not imply causal nor FIFO ordering
Implementing Causal Ordering

- Uses vector clocks to keep causal ordering (piggy backed to messages)
- Vector clock $V^g_i[i]$ counts all multicast messages of process i in group g
- hold-back queue reflects vector clocks

Algorithm for group member p_i ($i = 1, 2..., N$)

On initialization
$$V^g_i[j] := 0 \ (j = 1, 2..., N);$$

To CO-multicast message m to group g
$$V^g_i[i] := V^g_i[i] + 1;$$
$$B$-multicast($g$, $<V^g_i, m>$);

On B-deliver($<V^g_j, m>$) from p_j, with $g =$ group(m)
place $<V^g_j, m>$ in hold-back queue; wait until $V^g_j[j] = V^g_i[j] + 1$ and $V^g_j[k] \leq V^g_i[k]$ ($k \neq j$);

CO-deliver m; // after removing it from the hold-back queue
$$V^g_i[j] := V^g_i[j] + 1;$$
4.5: Consensus

- \(n \) processes \(p_1, \ldots, p_n \)
- at most \(f \) processes have arbitrary (Byzantine) failures
- Every process starts in the undecided state and proposes a value \(v_i \)
- Eventually all correct processes \(p_i \)
 - choose the decided state
 - and choose the same value \(d_i \in \{v_1, \ldots, v_n\} \)
 - and stay in this state
Consensus Problem

- **Termination**: Eventually each correct process p_i is decided by setting variable d_i
- **Agreement**: The decision value d_i of all correct processes is the same
- **Integrity**: If all correct process proposed the same value v, then $d_i = v$ for all correct p_i

- Possible decision functions: *majority, minimum, maximum, …*
- Byzantine failures can cause irritating and adversarial messages
- System crashes may not be detected
Byzantine Generals Problem

- n generals have to agree on attack or retreat
- one of them is the commander and issues the order
- at most f generals are traitors (possibly also the commander) and have adversarial behavior
- all correct generals have eventually to agree on the commander decision if he acts correctly

Consensus Problem

- **Termination**: Eventually each correct process p_i is decided by setting variable d_i
- **Agreement**: The decision value d_i of all correct processes is the same
- **Integrity**: If the commander is correct then all correct processes choose the commander's proposal
Interactive Consistency

- n processes need to agree on a vector of values
- Each process proposes a value v_i
- A correct process eventually decides on a vector $d_i = \{d_{i,1}, \ldots, d_{i,n}\}$ where
 \[d_{i,j} = v_j \quad \text{if } p_j \text{ is correct} \]

Interactive Consistency

- **Termination**: Eventually each correct process p_i is decided by setting variable d_i
- **Agreement**: The decision value d_i of all correct processes is the same
- **Integrity**: If the p_j is correct then all correct processes p_i set $d_{i,j} = v_j$
The Relationship between Consensus Problems

Assume solutions to Consensus (C), Byzantine generals (BG), interactive consistency (IC)

\[C_i(v_1, \ldots, v_n) = \text{consensus decision value of } p_i \text{ for proposals } v_i \]
\[BG_i(j, v) = \text{BG decision value of } p_i \text{ for commander } p_j \text{ proposal } v_j \]
\[IC_i(v_1, \ldots, v_n)[j] = j\text{-th position of interactive consistency decision vector of } p_i \text{ for proposals } v_i \]

Solving \(IC \) from \(BG \)

- In parallel \(n \) Byzantine generals problems are solved
- each process \(p_j \) acts as commander once

\[IC_i(v_1, \ldots, v_n)[j] = BG_i(j, v) \]
The Relationship between Consensus Problems

Solving C from IC

- $majority$ returns the most often parameter or ⊥ if no such value exists
- for all $i = 1, \ldots, n$

$$C_i(v_1, \ldots, v_n) = majority(IC_i(v_1, \ldots, v_n)[1], \ldots, IC_i(v_1, \ldots, v_n)[n])$$

Solving BG from C

- The commander p_j sends its proposed value to itself and each other process
- All processes run consensus with the values v_1, \ldots, v_n received from the commander
- for all $i = 1, \ldots, n$

$$BG_i(j, v) = C_i(v_1, \ldots, v_n)$$
Consensus in a Synchronous System

- Assume that there are no arbitrary (Byzantine) errors
- Given a synchronous distributed systems (fail-stop model)
- Use basic multicast for $f + 1$ rounds
- Multicast all known values of all participants
- $Values_i^r$ denotes the set of proposed variables at the beginning of round r
- Reduce communication overhead by multicasting only freshly arrived variables $Values_i^r - Values_i^{r-1}$
- Choose the minimum of all known values as final value
Consensus in a Synchronous System

Algorithm for process $p_i \in g$; algorithm proceeds in $f + 1$ rounds

On initialization

$\text{Values}_i^1 := \{v_i\}; \quad \text{Values}_i^0 = \{\}$;

In round r ($1 \leq r \leq f + 1$)

B-multicast(g, $\text{Values}_i^r - \text{Values}_i^{r - 1}$); // Send only values that have not been sent

$\text{Values}_i^{r + 1} := \text{Values}_i^r$;

while (in round r)

{

On B-deliver(V_j) from some p_j

$\text{Values}_i^{r + 1} := \text{Values}_i^{r + 1} \cup V_j$;

}

After $(f + 1)$ rounds

Assign $d_i = \text{minimum}(\text{Values}_i^{f + 1})$;
Consensus in a Synchronous System

- There are no arbitrary errors only processes that crash and are correctly detected
- Given a synchronous distributed systems (fail-stop model)
- Correctness
 - Assume that two processes p_i and p_j have different values at round r
 - Then, in round $r - 1$ at least one process p_k has sent different values to p_i and p_j
 - Then, p_k has crashed in this round
 - Since the number of crashes is limited to f there are not enough crashes to cover each of the $f + 1$ rounds
4. Coordination and Agreement

4.5. Consensus

Byzantine Generals Problem in a Synchronous System

- Assume that there are **Byzantine** errors
- Given a synchronous distributed system
 - crashes are detected
 - other wrong behavior can not detected, e.g. strange messages
- messages are not (digitally) signed
- at most f faulty processes

Impossibility of a solution of the Byzantine generals problem
[Lamport, Shostak, Pease 1982]

- The byzantine generals problem cannot be solved for $n = 3$ and $f = 1$.
- The byzantine generals problem cannot be solved for $n \leq 3f$.
Byzantine Generals Problem in a Synchronous System

Impossibility of a solution of the Byzantine generals problem for $n = 3$

- The Byzantine generals problem with arbitrary failures cannot be solved for $n = 3$ and $f = 1$ in a synchronous system.
 - a faulty commander sending different values to his generals
 - cannot be distinguished from a faulty general forwarding wrong values

Christian Schindelhauer
Distributed Systems
05. May 2013
Solution of the Byzantine Generals Problem

- Assume that there are **Byzantine** errors
- Given a synchronous distributed system
- Messages are not (digitally) signed
- At most f faulty processes

Solution of the Byzantine generals problem [Pease, Shostak, Lamport 1980]

- The Byzantine generals problem **can** be solved for $n = 4$ and $f = 1$.
- The Byzantine generals problem **can** be solved for $n \geq 3f + 1$.
Solution for Four Generals and One Faulty Process

The byzantine generals problem can be solved for \(n \geq 4 \) and \(f = 1 \).

Algorithm of Pease et al.

1. The commander sends a value to all other generals (lieutenants)
2. All lieutenants send the received value to all other lieutenants
3. The commander chooses its value; the lieutenants compute the majority of all received values

Since \(n \geq 4 \) the majority function always can be computed if at most one process is faulty

If the commander crashes very early then all lieutenants agree on \(\bot \)
More About the Byzantine Generals Problems

- For $f > 1$ the algorithm can be used recursively
 - Complexity: $f + 1$ rounds and $O(n^{f+1})$ messages
 - The time complexity of $f + 1$ rounds is optimal

- With the help of signed messages
 - any number of faulty generals $f < n$ can be dealt with
 - with signed messages the Byzantine Generals problem can be solved in $f + 1$ rounds with $O(n^2)$ messages [Dolev & Strong 1983]

- For asynchronous systems with crash failures
 - No algorithm can reach consensus even if only one processor is faulty [Fischer, Lynch, Paterson 1985]
 - Each algorithm that tries to reach consensus can be confronted with a faulty process which influences the result if it continues (instead of crashing)
End of Section 4