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4.1: Introduction

Coordination in the absence of master-slave relationship

Failures and how to deal with it

Distributed mutual exclusion

Agreement is a complex problem

Multicast communication

Byzantine agreement

Assumptions

Channels are reliable

The network remains connected

Process failures are not a threat to the
communication

Processes only fail by crashing
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Failure Detectors

Failure detector is a service answer queries about the failures of other
processes

Most failure detectors are unreliable failure detectors

Returning either suspected or unsuspected
suspected: some indication of process failure
unsuspected: no evidence for process failure

Reliable failure detector

Returning either failed or unsuspected
failed: detector has determined that the process has failed
unsuspected: no evidence for failure

Example of an unreliable failure detector

Each process p sends a ’p is here’ message to every other process every T seconds

If the message does not arrive within T + D seconds then the process is reported
as Suspected
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4.2: Distributed Mutual Exclusion

Problem known from operating systems (there: critical sections)

How to achieve mutual exclusion only with messages

Application-Level Protocol

enter() enter critical section – block if necessary
resourceAccesses() access shared resources in critical section
exit() leave critical section – other processes may enter

Essential Requirements

ME1: Safety At most one process may execute the critical section at a
time

ME2: Liveness Requests to enter and exist the critical section eventually
succeed

ME3: → ordering requests enter the critical section according to the
happened-before relationship

Christian Schindelhauer Distributed Systems 05. May 2013
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Performance of algorithms for mutual exclusion

Bandwidth consumed: proportional to the number of messages sent in each
entry and exit operation

Client delay at each entry and exit operation

Throughput rate of several processes entering the critical section

Throughput is measured by the synchronization delay between one process
exiting the critical section and the next process entering it

short synchronization delay correspond to high throughput

Christian Schindelhauer Distributed Systems 05. May 2013
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Central Server Algorithm

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

Simplest solution

Request are handled by queues

Performance

Entering the critical section: two messages (request, grant)
Leaving the critical section: one message (release)

Server is performance bottleneck
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Ring Based Algorithm

from Distributed Systems – Concepts and Design,

Coulouris, Dollimore, Kindberg

Simplest distributed solution

Arrange processes as ring (not related to
physical network)

A token (permission to enter critical section)
is passed around

Conditions ME1 (safety) and ME2 (liveness)
are met

ME3: → ordering is not fulfilled

Continuous consumption of bandwidth

Synchronisation delay is between 1 and n
messages.
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The Algorithm of Ricart and Agrawala

Mutual exclusion between n peer processes p1, p2, . . . , pn which

have unique numeric identifiers
possess communication channels to one another
keep Lamport clocks attached to the messages

Process states

released: outside the critical section
wanted: wanting to enter critical section
held: being in the critical section

Each process released immediately answers a request to enter the critical
section

The process with held does not reply to requests until it is finished

If more than one process requests the entry, the first one collecting the
n − 1 replies is allowed to enter the critical section.

If the Lamport clocks of the latest messages do not differ, the numeric ID
is used to break the tie.
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The Algorithm of Ricart and Agrawala

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
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The Algorithm of Ricart and Agrawala

Mutual exclusion properties

ME1 (safety): processes in state held prevent other ones from entering the
CS
ME2 (liveness): follows from the ordering
ME3 (ordering): follows from the use of Lamport clocks

Cost of gaining access: 2(n − 1) messages

n − 1 for multicast of request
n − 1 for replies

Client delay for requesting entry: a round-trip message

Synchronization delay is one message transmission time
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Maekawa’s Voting algorithm

Reduce the number of messages by asking a
subset

For each process pi choose a voting setVi such
that

1 pi ∈ Vi

2 Vi ∩ Vj 6= ∅ for all i , j
3 |Vi | = k for all i (fairness)
4 Each process occurs in at most m voting sets

Minimal choice of max{m, k} is k , m ∈ Θ(
√

n).

The optimal solution can be approximated by
placing all nodes in a square matrix and
choosing the row and column as voting set.

.
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from

Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
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Maekawa’s Voting algorithm
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Maekawa’s Voting algorithm

Mutual exclusion properties

ME1 (safety): follows from the intersections
of Vi and Vj

ME2 (liveness): not guaranteed.

Sanders improved this algorithm to achieve
ME2 and ME3 (not presented here)

Cost

2k per entry to the critical section
k for exit
O(
√

n) messages

Client delay for requesting entry: a round-trip
message

Synchronization delay is a round-trip message

.
p1

.
p2

.
p3

.
V3

.
V2

.
V1
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Mutual Exclusion

Fault Tolerance

What happens when messages are lost

What happens when process crashes

All of the above algorithms presented fail

We will revisit this problem
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4.3: Elections

Election Algorithm

An algorithm for choosing a unique process from a set of processes
p1, . . . , pn.

A process calls the election if it initiates a run of an election algorithm

Several elections could run in parallel where subset of processes are
participants or non-participants.

We assume processes have numeric IDs and that wlog. the process with the
highest will be chosen.

Requirements

E1: Safety During the run each participant has either electedi = ⊥ or
electedi = P, where P is the non-crashed process with the
largest ID

E2: Liveness All participating processes pi eventually set electedi 6= ⊥
or crash.

Christian Schindelhauer Distributed Systems 05. May 2013



4. Coordination and Agreement 4.3. Elections Page 16

Ring-Based Election: Algorithm of Chang and Roberts

Each process pi has a
communication channel to the next
process in the ring p(i+1) mod n

Messages are sent clockwise

Assumption: no failures occur

Non-participants are marked

When a process receives an election
message, it compares the identifier

If the arrived ID is greater, it
forwards it
if the arrived ID is smaller and
the process participates, it
replaces it with its ID
if the arrived ID equals the
process ID, the process is elected
and sends an elected message
around (with its ID).
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Ring-Based Election: Algorithm of Chang and Roberts

E1 (Safety): follows directly

E2 (Liveness): follows in the
absence of crashes and
communication errors

Worst-case performance if a single
node participates in the process

Time: 3n − 1 messages for the
election

Not very practical algorithm
fault-prone and high
communication overhead

assumes a-priori knowledge (ring
topology)
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The Bully Algorithm of Garcia & Molina

The distributed system is assumed to be synchronous

i.e. after a timeout period T a missing answer is interpreted as crash
reliable failure detector
fail-stop model

Message types

election: Announces an election
answer : Answers election message (contains ID)
coordinator : Announces the identity of the elected process

Any process may trigger an election

Every process receiving an election messages sends an answer and starts a
new one (if it has not started one before).

If a process knows it has the highest ID (based on the answers) it sends the
coordinator message to all processes

If answers of lower IDs fail to arrive within time T the sender considers
itself a coordinator and sends the coordinator message

Christian Schindelhauer Distributed Systems 05. May 2013
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The Bully Algorithm of Garcia & Molina

If a process receives an
election message it sends
back an answer messages
and begins another
election — if it has not
begun an election

If a process knows it has
the highest ID it sends the
coordinator message

New arriving processes
with higher ID

”
bully“

existing cordinators
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The Bully Algorithm of Garcia & Molina

E2: liveness condition is guaranteed if messages are transmitted reliably

E1: safety condition: Not guaranteed if processes are replaced by processes
with the same identifier

different conclusions on which is the coordinator process

E1 not guaranteed if the timeout value is too small

In the worst case the algorithm needs O(n2) messages for n processes
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4.4: Multicast communication

With a single call of multicast(g , m) a process sends a message to all
members of the group g

Using deliver(m), received messages are delivered on participating processes

Efficiency

Number of messages, transmission time

Delivery guarantees

ordering
receipt
e.g. IP Multicast does not guarantee ordering of success
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4.4: Multicast communication

System Model

multicast(g , m): sends the message m to all
members of group g
deliver(m): delivers a message to the process
(message has been received by lower level)
sender(m): sender of a message m (within the
message header)
group(m): group of a message m (within the
message header)

Allowed senders

closed group: senders must be members of a
group
open group: any process can send a message to
the group
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Basic Multicast

B-multicast(g , m): for each process p ∈ g , send(p, m)

B-deliver(m): if message m is received at p return the message m

Ack Implosion

if too many processes participate

ifsend uses acknowledgments, some of them could be dropped

then the messages could be retransmitted

further acks are lost due to full buffers etc.
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Reliable Multicast

Safety: Integrity

Every message is delivered at most once
Receiver of m is a member of group(m)
Sender has initiated a multicast(g , m)

Liveness: Validity

If a correct process multicasts a messages then it eventually delivers m (to
itself)

Agreement

If a correct process delivers m then all other processes eventually deliver m

Christian Schindelhauer Distributed Systems 05. May 2013
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Implementing Reliable Multicast over Basic Multicast

Each message needs to be sent |g | times!
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Implementing Reliable Multicast over IP Multicast

R-multicast(g , m) for sending process p

Sender increments a (sending) sequence number Sp
g for group g after each

messages
Sequence number sent with message
Acknowledgements of all received messages with 〈q, Rq

g 〉 are piggy backed
with message
Negative Acknowledgments: by received sequence number Rq

g causes
retransmission of message

R-deliver(g) for receiving process q

Rq
g is the sequence number of the latest message it has delivered.

it is send with each acknowledgment and allows the sender (and all
receivers) to learn about missing messages
Process q delivers a message m (with piggy backed S) only if S = Rq

g + 1.
messages with S > Rq

g + 1 are kept in a hold-back queue
messages with S < Rg

g + 1 are erased
After delivery Rq

g := Rq
g + 1

Christian Schindelhauer Distributed Systems 05. May 2013
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Hold-Back Queue for Arriving Multicast Messages
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Ordered Multicast

FIFO Ordering

If a process casts multicast(g , m) before multicast(g , m′)
then m is delivered before m′

in each process of group g

Causal Ordering:

If multicast(g , m)→ multicast(g , m′)
then m is delivered before m′

→ is based only on messages within the group g

Total Ordering:

If a process delivers m before m′

then m is delivered before m′ on any other process of g

Christian Schindelhauer Distributed Systems 05. May 2013
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Total, FIFO and Causal Ordering

Total Ordering

FIFO Ordering

Causal Ordering
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Bulletin Board

FIFO Ordering

Causal Ordering

Total Ordering

Christian Schindelhauer Distributed Systems 05. May 2013
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Implementing FIFO Ordering Multicast

Use sequence numbers for each message

Sp
g for each sender process p and group g

Rp
g for the last message delivered to process p of group g

Multiast over IP Multicast satsifies FIFO ordering

Essential components for FIFO ordering:

Sender piggy backs Sp
g on the message

Receiver checks wether received message satisfies S = Rq
g + 1

and delivers m and sets Rq
g := Rq

g + 1.
if S > Rq

g + 1 it puts m into the hold-back queue

In combination of a reliable multicast we obtain a reliable FIFO ordering
multicast algorithm
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Implementing Total Ordering Multicast with a Sequencer

A sequencer is an
extra process
taking care about
ordering

A sender process
sends message
with unique ID i
to sequencer

Sequencer marks
message with
ordering and
multicasts the
message

Christian Schindelhauer Distributed Systems 05. May 2013
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Implementing Total Ordering Multicast using ISIS

Used in the ISIS toolkit of Birman &
Joseph

Each participating process proposes a
sequence number for a messages

All proposed message numbers are unique
The sender chooses the maximum of all
proposals and sends this information
(piggy backed with the next messages)
This agreed sequence number defines the
ordering of the hold-back-queue
The smallest elements of the hold-back
queue can be delivered as the first
element

Does not imply causal nor FIFO ordering
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Implementing Causal Ordering

Uses vector
clocks to keep
causal ordering
(piggy backed
to messages)

Vector clock
V g

i [i ] counts all
multicast
messages of
process i in
group g

hold-back queue
reflects vector
clocks
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4.5: Consensus

n processes p1, . . . , pn

at most f processes have arbitrary
(Byzantine) failures

Every process starts in the
undecidedstate and proposes a
value vi

Eventually all correct processes pi

choose the decided state
and choose the same value
di ∈ {v1, . . . , vn}
and stay in this state

Christian Schindelhauer Distributed Systems 05. May 2013
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Consensus Problem

Termination: Eventually each
correct process pi is decided by
setting variable di

Agreement: The decision value di

of all correct processes is the same

Integrity: If all correct process
proposed the same value v , then
di = v for all correct pi

Possible decision functions:
majority, minimum, maximum, . . .

Byzantine failures can cause
irritating and adversarial messages

System crashes may not be
detected
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Byzantine Generals Problem

n generals have to agree on attack or retreat

one of them is the commander and issues the order

at most f generals are traitors (possibly also the commander) and have
adversarial behavior

all correct generals have eventually to agree on the commander decision if
he acts correctly

Consensus Problem

Termination: Eventually each correct process pi is decided by setting
variable di

Agreement: The decision value di of all correct processes is the same

Integrity: If the commander is correct then all correct processes choose the
commander’s proposal

Christian Schindelhauer Distributed Systems 05. May 2013
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Interactive Consistency

n processes need to agree on a vector of values

Each process proposes a value vi

A correct processes eventually decide on a vector di = {di,1, . . . , di,n} where

di,j = vj if pj is correct

Interactive Consistency

Termination: Eventually each correct process pi is decided by setting
variable di

Agreement: The decision value di of all correct processes is the same

Integrity: If the pj is correct then all correct processes pi set di,j = vj

Christian Schindelhauer Distributed Systems 05. May 2013
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The Relationship between Consensus Problems

Assume solutions to Consensus (C), Byzantine generals (BG), interactive
consistency (IC)

Ci (v1, . . . , vn) = consensus decision value of pi for proposals vi

BGi (j , v) = BG decision value of pi for commander pj proposal vj

ICi (v1, . . . , vn)[j ] = j-th position of interactive consistency
decision vector of pi for proposals vi

Solving IC from BG

In parallel n Byzantine generals problems are solved

each process pj acts as commander once

ICi (v1, . . . , vn)[j ] = BGi (j , v)
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The Relationship between Consensus Problems

Solving C from IC

majority returns the most often parameter or ⊥ if no such value exists

for all i = 1, . . . , n

Ci (v1, . . . , vn) = majority(ICi (v1, . . . , vn)[1], . . . , ICi (v1, . . . , vn)[n])

Solving BG from C

The commander pj sends its proposed value to itself and each other process

All processes run consenus with the values v1, . . . , vn received from the
commander

for all i = 1, . . . , n
BGi (j , v) = Ci (v1, . . . , vn)
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Consensus in a Synchronous System

Assume that there are no arbitrary (Byzantine) errors

Given a synchronous distributed systems (fail-stop model)

Use basic multicast for f + 1 rounds

Multicast all known values of all participants

Valuesr
i denotes the set of proposed variables at the beginning of round r

Reduce communication overhead by multicasting only freshly arrived
variables Valuesr

i − Valuesr−1
i

Choose the minimum of all known values as final value
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Consensus in a Synchronous System
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Consensus in a Synchronous System

There are no arbitrary errors only processes that crash and are correctly
detected

Given a synchronous distributed systems (fail-stop model)

Correctness

Assume that two processes pi and pj have different values at round r
Then, in round r − 1 at least one process pk has sent different values to pi

and pj

Then, pk has crashed in this round
Since the number of crashes is limited to f there are not enough crashes to
cover each of the f + 1 rounds
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Byzantine Generals Problem in a Synchronous System

Assume that there are Byzantine errors

Given a synchronous distributed system

crashes are detected
other wrong behavior can not detected, e.g. strange messages

messages are not (digitally) signed

at most f faulty processes

Impossibility of a solution of the Byzantine generals problem
[Lamport, Shostak, Pease 1982]

The byzantine generals problem cannot be solved for n = 3 and f = 1.

The byzantine generals problem cannot be solved for n ≤ 3f .
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Byzantine Generals Problem in a Synchronous System

Impossibility of a solution of the
Byzantine generals problem for n = 3

The byzantine generals problem with
arbitrary failures cannot be solved for
n = 3 and f = 1 in a synchronous
system.

a faulty commander sending different
values to his generals
cannot be distinguished from a faulty
general forwarding wrong values
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Solution of the Byzantine Generals Problem

Assume that there are Byzantine errors

Given a synchronous distributed system

messages are not (digitally) signed

at most f faulty processes

Solution of the Byzantine generals problem [Pease, Shostak,
Lamport 1980]

The byzantine generals problem can be solved for n = 4 and f = 1.

The byzantine generals problem can be solved for n ≥ 3f + 1.
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Solution for Four Generals and One Faulty Process
The byzantine generals problem can be
solved for n ≥ 4 and f = 1.

Algorithm of Pease et al.

1 The commander sends a value to all other
generals (lieutenants)

2 All lieutenants send the received value to all
other lieutenants

3 The commander chooses its value; the
lieutenants compute the majority of all
received values

Since n ≥ 4 the majority function always can
be computed if at most one process is faulty

If the commander crashes very early then all
lieutenants agree on ⊥
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More About the Byzantine Generals Problems

For f > 1 the algorithm can be used recursively

Complexity: f + 1 rounds and O(nf +1) messages
The time complexity of f + 1 rounds is optimal

With the help of signed messages

any number of faulty generals f < n can be dealt with
with signed messages the Byzantine Generals problem can be solved in f + 1
rounds with O(n2) messages [Dolev & Strong 1983]

For asynchronous systems with crash failures

No algorithm can reach consensus even if only one processor is faulty
[Fischer, Lynch, Paterson 1985]
Each algorithm that tries to reach consensus can be confronted with a faulty
process which influences the result if it continues (instead of crashing)
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End of Section 4
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