University of Freiburg, Germany Department of Computer Science

Distributed Systems

Chapter 4 Coordination and Agreement

Christian Schindelhauer

05. May 2013

4.1: Introduction

- Coordination in the absence of master-slave relationship
- Failures and how to deal with it
- Distributed mutual exclusion
- Agreement is a complex problem
- Multicast communication
- Byzantine agreement

Assumptions

- Channels are reliable
- The network remains connected.
- Process failures are not a threat to the communication
- Processes only fail by crashing

Failure Detectors

- Failure detector is a service answer queries about the failures of other processes
- Most failure detectors are unreliable failure detectors
 - Returning either suspected or unsuspected
 - suspected: some indication of process failure
 - unsuspected: no evidence for process failure
- Reliable failure detector
 - Returning either failed or unsuspected
 - failed: detector has determined that the process has failed
 - unsuspected: no evidence for failure

Example of an unreliable failure detector

- \blacksquare Each process p sends a 'p is here' message to every other process every T seconds
- lacktriangleright If the message does not arrive within T+D seconds then the process is reported as Suspected

4.2: Distributed Mutual Exclusion

- Problem known from operating systems (there: critical sections)
- How to achieve mutual exclusion only with messages

Application-Level Protocol

Essential Requirements

ME1: Safety

At most one process may execute the critical section at a time

ME2: Liveness

Requests to enter and exist the critical section eventually succeed

ME3: \rightarrow ordering

requests enter the critical section according to the happened-before relationship

□ ▶ ◆ □ ▶ ◆ 臣 ▶ ◆ 臣 ● り へ (

Performance of algorithms for mutual exclusion

- Bandwidth consumed: proportional to the number of messages sent in each entry and exit operation
- Client delay at each entry and exit operation
- Throughput rate of several processes entering the critical section
- Throughput is measured by the *synchronization delay* between one process exiting the critical section and the next process entering it
- short synchronization delay correspond to high throughput

Central Server Algorithm

from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

- Simplest solution
- Request are handled by queues
- Performance
 - Entering the critical section: two messages (request, grant)
 - Leaving the critical section: one message (release)
- Server is performance bottleneck

Ring Based Algorithm

from Distributed Systems – Concepts and Design,
Coulouris, Dollimore, Kindberg

- Simplest distributed solution
- Arrange processes as ring (not related to physical network)
- A token (permission to enter critical section) is passed around
- Conditions ME1 (safety) and ME2 (liveness) are met
- ME3: → ordering is not fulfilled
- Continuous consumption of bandwidth
- Synchronisation delay is between 1 and n messages.

The Algorithm of Ricart and Agrawala

(1) 1)

- Mutual exclusion between \underline{n} peer processes p_1, p_2, \ldots, p_n which
 - have <u>unique numeric identifiers</u>
 - possess communication channels to one another
 - keep <u>Lamport clocks attached</u> to the messages
- Process states
 - released: outside the critical section
 - wanted: wanting to enter critical section
 - held: being in the critical section

- Each process released immediately answers a request to enter the critical section
- The process with held does not reply to requests until it is finished
- If more than one process requests the entry, the first one collecting the n-1 replies is allowed to enter the critical section.
- If the Lamport clocks of the latest messages do not differ, the numeric ID is used to break the tie.

The Algorithm of Ricart and Agrawala

- → On initialization state := RELEASED:
- → To enter the section
 - state := WANTED:

Multicast *request* to all processes;

T := request's timestamp;

Wait until (number of replies received = (N-1)); state := HELD;

state .= HELD

 \rightarrow On receipt of a request $\langle T_i, p_i \rangle$ at $p_i (i \neq j)$

if (state = HELD or (state = WANTED and $(T, p_i) < (T_i, p_i)$))

then

queue request from p_i without replying;

else reply immediately to p_i ; \mathbf{q}

end if

To exit the critical section

state := RELEASED;

reply to any queued requests;

half Sin On-

request processing deferred here

 $p_j) < (T_i, p_i)))$

from Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

4□ ▶ 4回 ▶ 4 亘 ▶ 4 亘 ▶ 9 ♀ ○

The Algorithm of Ricart and Agrawala

- Mutual exclusion properties
 - ME1 (safety): processes in state held prevent other ones from entering the CS
 - @ ME2 (liveness): follows from the ordering
 - ME3 (ordering): follows from the use of Lamport clocks
- Cost of gaining access: 2(n-1) messages
 - n-1 for multicast of request
 - n-1 for replies
- → Client delay for requesting entry: a round-trip message
 - Synchronization delay is one message transmission time

Maekawa's Voting algorithm

- Reduce the number of messages by asking a subset
- For each process p_i choose a *voting setV_i* such that
- \rightarrow 4 Each process occurs in at most m voting sets
- Minimal choice of $\max\{m, k\}$ is $k, m \in \Theta(\sqrt{n})$.
- The optimal solution can be approximated by placing all nodes in a square matrix and choosing the row and column as voting set.

Distributed Systems - Concepts and Design, Coulouris, Dollimore, Kindberg

Maekawa's Voting algorithm

```
On initialization
 → state := RELEASED:
 → voted := FALSE;
  For p<sub>i</sub> to enter the critical section
→ state := WANTED;
\longrightarrow Multicast request to all processes in V_i;
\longrightarrow Wait until (number of replies received = K);
    state := HELD;
  On receipt of a request from p_i at p_i
\rightarrow if (state = HELD or voted = TRUE)
    then
      queue request from p, without replying;
    else
      send reply to p_i;
       voted := TRUE;
    end if
```

```
For p, to exit the critical section
→ state := RELEASED;
  Multicast release to all processes in V_i;
On receipt of a release from p_i at p_i
  if (queue of requests is non-empty)
  then
    remove head of queue – from p_{\nu}, say;
    send reply to p_{\nu};
    voted := TRUE; ✓
  else
    voted := FALSE:
```

Maekawa's Voting algorithm

- Mutual exclusion properties
 - ME1 (safety): follows from the intersections of V_i and V_j
 - ME2 (liveness): not guaranteed.
- Sanders improved this algorithm to achieve ME2 and ME3 (not presented here)
- Cost
 - 2k per entry to the critical section
 - k for exit
 - $O(\sqrt{n})$ messages
- Client delay for requesting entry: a round-trip message
- 🦊 Synchronization delay is a round-trip message

Mutual Exclusion

Fault Tolerance

- What happens when messages are lost
- What happens when process crashes
- All of the above algorithms presented fail
- We will revisit this problem

4.3: Elections

Election Algorithm

- An algorithm for choosing a unique process from a set of processes p_1, \ldots, p_n .
- A process calls the election if it initiates a run of an election algorithm
- Several elections could run in parallel where subset of processes are participants or non-participants.
- We assume processes have numeric IDs and that wlog. the process with the highest will be chosen.

Requirements

E1: Safety	During the run each participant has either elected _{i} = \perp or	
	elected $_i = P$, where P is the non-crashed process with the	
	largest ID	

E2: Liveness All participating processes p_i eventually set elected_i $\neq \bot$ or crash.

oordination and Agreement 4.3. Elections Page 16

Ring-Based Election: Algorithm of Chang and Roberts

- Each process p_i has a communication channel to the next process in the ring p_{(i+1) mod n}
- Messages are sent clockwise
- Assumption: no failures occur
 - Non-participants are marked
 - When a process receives an election message, it compares the identifier
 - If the arrived ID is greater, it forwards it
 - if the arrived ID is smaller and the process participates, it replaces it with its ID
 - if the arrived ID equals the process ID, the process is elected and sends an elected message around (with its ID).

Note: The election was started by process 17.

The highest process identifier encountered so far is 24.

Participant processes are shown darkened

Ring-Based Election: Algorithm of Chang and Roberts

- E1 (Safety): follows directly ✓
- E2 (Liveness): follows in the absence of crashes and communication errors
- Worst-case performance if a single node participates in the process
- Time: $\sqrt[8]{n} 1$ messages for the election \checkmark
- Not very practical algorithm fault-prone and high communication overhead
- assumes a-priori knowledge (ring topology)

Note: The election was started by process 17.

The highest process identifier encountered so far is 24.

Participant processes are shown darkened

The Bully Algorithm of Garcia & Molina

- The distributed system is assumed to be synchronous
 - i.e. after a timeout period T a missing answer is interpreted as crash
 - reliable failure detector
 - 🌈 fail-stop model
- Message types
 - election: Announces an election
 - answer: Answers election message (contains ID)
 - coordinator: Announces the identity of the elected process
- Any process may trigger an election
- new one (if it has not started one before).
- 🚺 If a process knows it has the highest ID (based on the answers) it sends the coordinator message to all processes
- f If answers of lower IDs fail to arrive within time T the sender considers itself a coordinator and sends the coordinator message

If a process receives an election message it sends back an answer messages and begins another election — if it has not begun an election

- If a process knows it has the highest ID it sends the coordinator message
- New arriving processes with higher ID "bully" existing cordinators

The Bully Algorithm of Garcia & Molina

- E2: liveness condition is guaranteed if messages are transmitted reliably
- <u>E1</u>: safety condition: Not guaranteed if processes are replaced by processes with the same identifier
- different conclusions on which is the coordinator process
- ED not guaranteed if the timeout value is too small
- In the worst case the algorithm needs $O(n^2)$ messages for n processes

4.4: Multicast communication

· broadcest · multicost · unitast one to all one to on.

• With a single call of multicast(g, m) a process sends a message to all members of the group g

■ Using deliver(m), received messages are delivered on participating processes

■ Number of messages, transmission time

→ ordering

→ receipt

e.g. IP Multicast does not guarantee ordering of success

IP: Interal Protocol

4.4: Multicast communication

System Model

- multicast(g, m): sends the message m to all members of group g
- deliver(m): delivers a message to the process (message has been received by lower level)
- <u>sender(m)</u>: sender of a message m (within the message header)
- group(m): group of a message m (within the message header)
- Allowed senders
 - closed group: senders must be members of a group
 - open group: any process can send a message to the group

Basic Multicast

- *B-multicast*(g, m): for each process $p \in g$, send(p, m)
- B-deliver(m): if message m is received at p return the message m

Ack Implosion

- if too many processes participate
- ifsend uses acknowledgments, some of them could be dropped
- then the messages could be retransmitted
- further acks are lost due to full buffers etc.

Reliable Multicast

- Safety: Integrity
 - Every message is delivered at most once
 - Receiver of m is a member of group(m)
 - Sender has initiated a multicast(g, m)
- Liveness: Validity

- If a correct process multicasts a messages then it eventually delivers m (to itself)
- Agreement
 - lacktriangleright If a correct process delivers m then all other processes eventually deliver m

Implementing Reliable Multicast over Basic Multicast

```
On initialization
   Received := \{\};
For process p to R-multicast message m to group g
   B-multicast(g, m); // p \in g is included as a destination
On B-deliver(m) at process q with g = group(m)
   if(m \notin Received)
   then
              Received := Received \cup \{m\};
              if (q \neq p) then B-multicast(g, m); end if
              R-deliver m;
   end if
```

Each message needs to be sent |g| times!

Implementing Reliable Multicast over IP Multicast

- \blacksquare R-multicast(g, m) for sending process p
 - Sender increments a (sending) sequence number S_{σ}^{p} for group g after each messages
 - Sequence number sent with message
 - Acknowledgements of all received messages with $\langle q, R_g^q \rangle$ are piggy backed with message
 - Negative Acknowledgments: by received sequence number R^q_σ causes retransmission of message
- R-deliver(g) for receiving process q
 - $\mathbf{R}_{\varepsilon}^{q}$ is the sequence number of the latest message it has delivered.
 - it is send with each acknowledgment and allows the sender (and all receivers) to learn about missing messages
 - Process q delivers a message m (with piggy backed S) only if $S = R_e^q + 1$.
 - messages with $S > R_{\sigma}^{q} + 1$ are kept in a hold-back queue
 - messages with $S < R_g^g + 1$ are erased
 - After delivery $R^q_{\sigma} := R^q_{\sigma} + 1$

Hold-Back Queue for Arriving Multicast Messages

Ordered Multicast

- FIFO Ordering
 - If a process casts multicast(g, m) before multicast(g, m')
 - then m is delivered before m'
 - \blacksquare in each process of group g
- Causal Ordering:
 - If $\operatorname{multicast}(g,m) \to \operatorname{multicast}(g,m')$
 - \blacksquare then m is delivered before m'
 - lacksquare ightarrow is based only on messages within the group g
- Total Ordering:
 - If a process delivers m before m'
 - then m is delivered before m' on any other process of g

Total, FIFO and Causal Ordering

■ Total Ordering

■ FIFO Ordering

■ Causal Ordering

Bulletin Board

Bulletin board: os.interesting			
Item	From	Subject	
23	A.Hanlon	Mach	
24	G.Joseph	Microkernels	
25	A.Hanlon	Re: Microkernels	
26	T.L'Heureux	RPC performance	
27	M.Walker	Re: Mach	
end			

- FIFO Ordering
- Causal Ordering
- Total Ordering

Implementing FIFO Ordering Multicast

- Use sequence numbers for each message
 - S_g^p for each sender process p and group g
 - \blacksquare R_g^p for the last message delivered to process p of group g
- Multiast over IP Multicast satsifies FIFO ordering
- Essential components for FIFO ordering:
 - Sender piggy backs S_g^p on the message
 - lacksquare Receiver checks wether received message satisfies $S=R_g^q+1$
 - and delivers m and sets $R_g^q := R_g^q + 1$.
 - lacksquare if $S>R_{
 m g}^q+1$ it puts m into the hold-back queue
- In combination of a reliable multicast we obtain a reliable FIFO ordering multicast algorithm

Implementing Total Ordering Multicast with a Sequencer

- A sequencer is an extra process taking care about ordering
- A sender process sends message with unique ID i to sequencer
- Sequencer marks message with ordering and multicasts the message

```
1. Algorithm for group member p
```

```
On initialization: r_{\sigma} := 0;
To TO-multicast message m to group g
   B-multicast(g \cup \{sequencer(g)\}, \langle m, i \rangle);
```

On B-deliver(< m, i >) with g = group(m)Place $\langle m, i \rangle$ in hold-back queue;

```
On B-deliver(m_{order} = <"order", i, S>) with g = group(m_{order})
   wait until \langle m, i \rangle in hold-back queue and S = r_{\alpha};
                     // (after deleting it from the hold-back queue)
   TO-deliver m:
   r_{\sigma} = S + 1;
```

2. Algorithm for sequencer of g

On initialization:
$$s_{\sigma} := 0$$
;

On B-deliver(
$$< m, i >$$
) with $g = group(m)$
B-multicast($g, <$ "order", $i, s_g >$);
 $s_g := s_g + 1$;

Implementing Total Ordering Multicast using ISIS

- Used in the ISIS toolkit of Birman & Joseph
- Each participating process proposes a sequence number for a messages
 - All proposed message numbers are unique
 - The sender chooses the maximum of all proposals and sends this information (piggy backed with the next messages)
 - This agreed sequence number defines the ordering of the hold-back-queue
 - The smallest elements of the hold-back queue can be delivered as the first element
- Does not imply causal nor FIFO ordering

Implementing Causal Ordering

- Uses vector clocks to keep causal ordering (piggy backed to messages)
- Vector clock V_i^g[i] counts all multicast messages of process i in group g
- hold-back queue reflects vector clocks

```
On initialization V_i^g[j] := 0 \ (j = 1, 2..., N);
```

Algorithm for group member p_i (i = 1, 2..., N)

To CO-multicast message m to group g $V_i^g[i] := V_i^g[i] + 1;$ B-multicast(g, $\langle V_i^g, m \rangle$);

On B-deliver($\langle V_j^g, m \rangle$) from p_j , with g = group(m) place $\langle V_j^g, m \rangle$ in hold-back queue; wait until $V_j^g[j] = V_i^g[j] + 1$ and $V_j^g[k] \leq V_i^g[k]$ ($k \neq j$); CO-deliver m; // after removing it from the hold-back queue $V_j^g[j] := V_j^g[j] + 1$;

(ロ) (団) (트) (트) 트 り(◎

4.5: Consensus

- \blacksquare *n* processes p_1, \ldots, p_n
- at most f processes have arbitrary (Byzantine) failures
- Every process starts in the undecidedstate and proposes a value v_i
- Eventually all correct processes p_i
 - choose the decided state
 - and choose the same value $d_i \in \{v_1, \dots, v_n\}$
 - and stay in this state

Consensus Problem

- Termination: Eventually each correct process p_i is decided by setting variable d_i
- Agreement: The decision value d_i of all correct processes is the same
- Integrity: If all correct process proposed the same value v, then d_i = v for all correct p_i
- Possible decision functions: majority, minimum, maximum, ...
- Byzantine failures can cause irritating and adversarial messages
- System crashes may not be detected

Byzantine Generals Problem

- n generals have to agree on attack or retreat
- one of them is the commander and issues the order
- at most f generals are traitors (possibly also the commander) and have adversarial behavior
- all correct generals have eventually to agree on the commander decision if he acts correctly

Consensus Problem

- Termination: Eventually each correct process p_i is decided by setting variable d_i
- Agreement: The decision value d_i of all correct processes is the same
- Integrity: If the commander is correct then all correct processes choose the commander's proposal

Interactive Consistency

- n processes need to agree on a vector of values
- Each process proposes a value *v_i*
- lacksquare A correct processes eventually decide on a vector $d_i = \{d_{i,1}, \dots, d_{i,n}\}$ where

$$d_{i,j} = v_j$$
 if p_j is correct

Interactive Consistency

- Termination: Eventually each correct process p_i is decided by setting variable d_i
- Agreement: The decision value d_i of all correct processes is the same
- Integrity: If the p_j is correct then all correct processes p_i set $d_{i,j} = v_j$

The Relationship between Consensus Problems

Assume solutions to Consensus (C), Byzantine generals (BG), interactive consistency (IC)

```
C_i(v_1, \ldots, v_n) = \text{consensus decision value of } p_i \text{ for proposals } v_i
BG_i(j, v) = \text{BG decision value of } p_i \text{ for commander } p_j \text{ proposal } v_j
IC_i(v_1, \ldots, v_n)[j] = j\text{-th position of interactive consistency decision vector of } p_i \text{ for proposals } v_i
```

Solving IC from BG

- In parallel *n* Byzantine generals problems are solved
- \blacksquare each process p_i acts as commander once

$$IC_i(v_1,\ldots,v_n)[j]=BG_i(j,v)$$

(ロ) (団) (트) (트) 트 り(◎

The Relationship between Consensus Problems

Solving C from IC

- \blacksquare majority returns the most often parameter or \bot if no such value exists
- for all $i = 1, \ldots, n$

$$C_i(v_1,\ldots,v_n) = majority(IC_i(v_1,\ldots,v_n)[1],\ldots,IC_i(v_1,\ldots,v_n)[n])$$

Solving BG from C

- lacktriangle The commander p_j sends its proposed value to itself and each other process
- All processes run consenus with the values v_1, \ldots, v_n received from the commander
- for all $i = 1, \ldots, n$

$$BG_i(j, v) = C_i(v_1, \ldots, v_n)$$

(□ → ◀ 🗗 → ◀ 볼 → ◀ 볼 →) Q () 05. May 2013

Consensus in a Synchronous System

- Assume that there are no arbitrary (Byzantine) errors
- Given a synchronous distributed systems (fail-stop model)
- Use basic multicast for f + 1 rounds
- Multicast all known values of all participants
- $Values_i^r$ denotes the set of proposed variables at the beginning of round r
- Reduce communication overhead by multicasting only freshly arrived variables $Values_i^r Values_i^{r-1}$
- Choose the minimum of all known values as final value

Consensus in a Synchronous System

Algorithm for process $p_i \in g$; algorithm proceeds in f + 1 rounds

```
On initialization
    Values_{i}^{1} := \{v_{i}\}; Values_{i}^{0} = \{\};
In round r (1 \le r \le f + 1)
    B-multicast(g, Values_i^r – Values_i^{r-1}); // Send only values that have not been sent Values_i^{r+1} := Values_i^r;
    while (in round r)
                    On B-deliver(V_j) from some p_j

Values_i^{r+1} := Values_i^{r+1} \cup V_j;
After (f+1) rounds
    Assign d_i = minimum(Values_i^{f+1});
```

Christian Schindelhauer Distributed Systems 05. May 2013

Consensus in a Synchronous System

- There are no arbitrary errors only processes that crash and are correctly detected
- Given a synchronous distributed systems (fail-stop model)
- Correctness
 - \blacksquare Assume that two processes p_i and p_j have different values at round r
 - Then, in round r-1 at least one process p_k has sent different values to p_i and p_i
 - Then, p_k has crashed in this round
 - Since the number of crashes is limited to f there are not enough crashes to cover each of the f+1 rounds

Byzantine Generals Problem in a Synchronous System

- Assume that there are **Byzantine** errors
- Given a synchronous distributed system
 - crashes are detected
 - other wrong behavior can not detected, e.g. strange messages
- messages are not (digitally) signed
- at most f faulty processes

Impossibility of a solution of the Byzantine generals problem [Lamport, Shostak, Pease 1982]

- The byzantine generals problem cannot be solved for n = 3 and f = 1.
- The byzantine generals problem cannot be solved for $n \le 3f$.

Byzantine Generals Problem in a Synchronous System

Impossibility of a solution of the Byzantine generals problem for n = 3

■ The byzantine generals problem with

- arbitrary failures cannot be solved for n=3 and f=1 in a synchronous system.
 - a faulty commander sending different values to his generals
 - cannot be distinguished from a faulty general forwarding wrong values

Solution of the Byzantine Generals Problem

- Assume that there are Byzantine errors
- Given a synchronous distributed system
- messages are not (digitally) signed
- at most *f* faulty processes

Solution of the Byzantine generals problem [Pease, Shostak, Lamport 1980]

- The byzantine generals problem can be solved for n = 4 and f = 1.
- The byzantine generals problem can be solved for $n \ge 3f + 1$.

Solution for Four Generals and One Faulty Process

■ The byzantine generals problem can be solved for $n \ge 4$ and f = 1.

Algorithm of Pease et al.

- The commander sends a value to all other generals (lieutenants)
- All lieutenants send the received value to all other lieutenants
- The commander chooses its value; the lieutenants compute the majority of all received values
- Since $n \ge 4$ the majority function always can be computed if at most one process is faulty
- \blacksquare If the commander crashes very early then all lieutenants agree on \bot

More About the Byzantine Generals Problems

- For f > 1 the algorithm can be used recursively
 - Complexity: f + 1 rounds and $O(n^{f+1})$ messages
 - lacktriangle The time complexity of f+1 rounds is optimal
- With the help of signed messages
 - \blacksquare any number of faulty generals f < n can be dealt with
 - with signed messages the Byzantine Generals problem can be solved in f+1 rounds with $O(n^2)$ messages [Dolev & Strong 1983]
- For asynchronous systems with crash failures
 - No algorithm can reach consensus even if only one processor is faulty [Fischer, Lynch, Paterson 1985]
 - Each algorithm that tries to reach consensus can be confronted with a faulty process which influences the result if it continues (instead of crashing)

Christian Schindelhauer Distributed Systems 05. May 2013

End of Section 4