University of Freiburg, Germany
Department of Computer Science

Distributed Systems

Chapter 4 Coordination and Agreement

Christian Schindelhauer

05. May 2013
4.1: Introduction

- Coordination in the absence of master-slave relationship
- Failures and how to deal with it
- Distributed mutual exclusion
- Agreement is a complex problem
- Multicast communication
- Byzantine agreement

Assumptions

- Channels are reliable
- The network remains connected
- Process failures are not a threat to the communication
- Processes only fail by crashing
Failure Detectors

- Failure detector is a service that answers queries about the failures of other processes.
- Most failure detectors are *unreliable failure detectors*:
 - Returning either *suspected* or *unsuspected*:
 - *suspected*: some indication of process failure
 - *unsuspected*: no evidence for process failure
- *Reliable failure detector*:
 - Returning either *failed* or *unsuspected*:
 - *failed*: detector has determined that the process has failed
 - *unsuspected*: no evidence for failure

Example of an unreliable failure detector

- Each process p sends a ’p is here’ message to every other process every T seconds.
- If the message does not arrive within $T + D$ seconds then the process is reported as *Suspected*.
4.2: Distributed Mutual Exclusion

- Problem known from operating systems (there: critical sections)
- How to achieve mutual exclusion only with messages

Application-Level Protocol

- `enter()`: enter critical section – block if necessary
- `resourceAccesses()`: access shared resources in critical section
- `exit()`: leave critical section – other processes may enter

Essential Requirements

- **ME1: Safety**: At most one process may execute the critical section at a time
- **ME2: Liveness**: Requests to enter and exist the critical section eventually succeed
- **ME3: \(\rightarrow\) ordering**: Requests enter the critical section according to the happened-before relationship
Performance of algorithms for mutual exclusion

- **Bandwidth** consumed: proportional to the number of messages sent in each *entry* and *exit* operation
- **Client delay** at each *entry* and *exit* operation
- **Throughput** rate of several processes entering the critical section
- Throughput is measured by the *synchronization delay* between one process exiting the critical section and the next process entering it
- Short *synchronization delay* correspond to high *throughput*
Central Server Algorithm

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg

- Simplest solution
- Request are handled by queues
- Performance
 - Entering the critical section: two messages (request, grant)
 - Leaving the critical section: one message (release)
- Server is performance bottleneck
Ring Based Algorithm

- Simplest distributed solution
- Arrange processes as ring (not related to physical network)
- A token (permission to enter critical section) is passed around
- Conditions ME1 (safety) and ME2 (liveness) are met
- ME3: → ordering is not fulfilled
- Continuous consumption of bandwidth
- Synchronisation delay is between 1 and n messages.

from Distributed Systems – Concepts and Design,
Coulouris, Dollimore, Kindberg
The Algorithm of Ricart and Agrawala

- Mutual exclusion between n peer processes p_1, p_2, \ldots, p_n which
 - have unique numeric identifiers
 - possess communication channels to one another
 - keep Lamport clocks attached to the messages

- Process states
 - released: outside the critical section
 - wanted: wanting to enter critical section
 - held: being in the critical section

- Each process released immediately answers a request to enter the critical section
- The process with held does not reply to requests until it is finished
- If more than one process requests the entry, the first one collecting the $n - 1$ replies is allowed to enter the critical section.
- If the Lamport clocks of the latest messages do not differ, the numeric ID is used to break the tie.
The Algorithm of Ricart and Agrawala

- **On initialization**

 - `state := RELEASED;`

- **To enter the section**

 - `state := WANTED;`

 Multicast request to all processes;

 - `T := request’s timestamp;`

 - `Wait until (number of replies received = (N - 1));`

 - `state := HELD;`

- **On receipt of a request `<T_i, p_i>` at p_j (i ≠ j)**

 - if `(state = HELD or (state = WANTED and (T, p_j) < (T_i, p_i)))`

 - queue request from p_i without replying;

 - else

 - reply immediately to p_i;

 - end if

- **To exit the critical section**

 - `state := RELEASED;`

 - reply to any queued requests;

from *Distributed Systems – Concepts and Design*, Coulouris, Dollimore, Kindberg
The Algorithm of Ricart and Agrawala

- Mutual exclusion properties
 - ME1 (safety): processes in state `held` prevent other ones from entering the CS
 - ME2 (liveness): follows from the ordering
 - ME3 (ordering): follows from the use of Lamport clocks
- Cost of gaining access: $2(n - 1)$ messages
 - $n - 1$ for multicast of request
 - $n - 1$ for replies
- Client delay for requesting entry: a round-trip message
- Synchronization delay is one message transmission time
Maekawa’s Voting algorithm

- Reduce the number of messages by asking a subset
- For each process p_i choose a voting set V_i such that
 1. $p_i \in V_i$
 2. $V_i \cap V_j \neq \emptyset$ for all i, j
 3. $|V_i| = k$ for all i (fairness)
 4. Each process occurs in at most m voting sets
- Minimal choice of $\max\{m, k\}$ is $k, m \in \Theta(\sqrt{n})$.
- The optimal solution can be approximated by placing all nodes in a square matrix and choosing the row and column as voting set.

Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
Maekawa’s Voting algorithm

On initialization

\[\text{state} := \text{RELEASED}; \]
\[\text{voted} := \text{FALSE}; \]

For \(p_i \) to enter the critical section

\[\text{state} := \text{WANTED}; \]
\[\text{Multicast request to all processes in } V_i; \]
\[\text{Wait until (number of replies received } = K); \]
\[\text{state} := \text{HELD}; \]

On receipt of a request from \(p_i \) at \(p_j \)

\[\text{if (state } = \text{HELD or voted } = \text{TRUE)} \]
\[\text{then} \]
\[\text{queue request from } p_i \text{ without replying;} \]
\[\text{else} \]
\[\text{send reply to } p_i; \]
\[\text{voted } := \text{TRUE}; \]
\[\text{end if} \]

For \(p_i \) to exit the critical section

\[\text{state} := \text{RELEASED}; \]
\[\text{Multicast release to all processes in } V_i; \]

On receipt of a release from \(p_i \) at \(p_j \)

\[\text{if (queue of requests is non-empty)} \]
\[\text{then} \]
\[\text{remove head of queue – from } p_k, \text{ say;} \]
\[\text{send reply to } p_i; \]
\[\text{voted } := \text{TRUE}; \]
\[\text{else} \]
\[\text{voted } := \text{FALSE}; \]
\[\text{end if} \]
Maekawa’s Voting algorithm

- Mutual exclusion properties
 - ME1 (safety): follows from the intersections of V_i and V_j
 - ME2 (liveness): not guaranteed.

- Sanders improved this algorithm to achieve ME2 and ME3 (not presented here)

- Cost
 - $2k$ per entry to the critical section
 - k for exit
 - $O(\sqrt{n})$ messages

- Client delay for requesting entry: a round-trip message

- Synchronization delay is a round-trip message
Mutual Exclusion

Fault Tolerance

- What happens when messages are lost
- What happens when process crashes

- All of the above algorithms presented fail
- We will revisit this problem
4.3: Elections

Election Algorithm

- An algorithm for choosing a unique process from a set of processes p_1, \ldots, p_n.
- A process calls the election if it initiates a run of an election algorithm.
- Several elections could run in parallel where subset of processes are participants or non-participants.
- We assume processes have numeric IDs and that wlog. the process with the highest will be chosen.

Requirements

E1: Safety During the run each participant has either elected $i = \perp$ or elected $i = P$, where P is the non-crashed process with the largest ID.

E2: Liveness All participating processes p_i eventually set elected $i \neq \perp$ or crash.
Ring-Based Election: Algorithm of Chang and Roberts

- Each process p_i has a communication channel to the next process in the ring $p_{(i+1) \mod n}$
- Messages are sent clockwise
- Assumption: no failures occur
- Non-participants are marked
- When a process receives an election message, it compares the identifier
 - If the arrived ID is greater, it forwards it
 - if the arrived ID is smaller and the process participates, it replaces it with its ID
 - if the arrived ID equals the process ID, the process is elected and sends an elected message around (with its ID).

Note: The election was started by process 17. The highest process identifier encountered so far is 24. Participant processes are shown darkened.
Ring-Based Election: Algorithm of Chang and Roberts

- E1 (Safety): follows directly
- E2 (Liveness): follows in the absence of crashes and communication errors
- Worst-case performance if a single node participates in the process
- Time: $3n - 1$ messages for the election
- Not very practical algorithm fault-prone and high communication overhead
- Assumes a-priori knowledge (ring topology)

Note: The election was started by process 17. The highest process identifier encountered so far is 24. Participant processes are shown darkened.
The Bully Algorithm of Garcia & Molina

- The distributed system is assumed to be synchronous
 - i.e. after a timeout period T a missing answer is interpreted as crash
 - reliable failure detector
 - fail-stop model

- Message types
 - $election$: Announces an election
 - $answer$: Answers $election$ message (contains ID)
 - $coordinator$: Announces the identity of the elected process

- Any process may trigger an $election$

- Every process receiving an $election$ messages sends an $answer$ and starts a new one (if it has not started one before).

- If a process knows it has the highest ID (based on the answers) it sends the $coordinator$ message to all processes

- If answers of lower IDs fail to arrive within time T the sender considers itself a coordinator and sends the $coordinator$ message
The Bully Algorithm of Garcia & Molina

$n^2 + (n-1)^2 + (n-2)^2 + \ldots + 1 = \Theta(n^2)$

- If a process receives an election message it sends back an answer message and begins another election — if it has not begun an election.
- If a process knows it has the highest ID it sends the coordinator message.
- New arriving processes with higher ID „bully“ existing coordinators.
The Bully Algorithm of Garcia & Molina

- E2: liveness condition is guaranteed if messages are transmitted reliably
- E1: safety condition: Not guaranteed if processes are replaced by processes with the same identifier
- different conclusions on which is the coordinator process
- E1: not guaranteed if the timeout value is too small
- In the worst case the algorithm needs $O(n^2)$ messages for n processes

\[\text{if they stay alive}\]
4.4: Multicast communication

- With a single call of \textit{multicast}(g, m) a process sends a message to all members of the group g.
- Using \textit{deliver}(m), received messages are delivered on participating processes.

\underline{Efficiency}
- Number of messages, transmission time

\underline{Delivery guarantees}
- ordering
- receipt
- e.g. IP Multicast does not guarantee ordering of success.
4.4: Multicast communication

- **System Model**
 - \textit{multicast}(g, m): sends the message \(m\) to all members of group \(g\)
 - \textit{deliver}(m): delivers a message to the process (message has been received by lower level)
 - \textit{sender}(m): sender of a message \(m\) (within the message header)
 - \textit{group}(m): group of a message \(m\) (within the message header)

- **Allowed senders**
 - closed group: senders must be members of a group
 - open group: any process can send a message to the group
4. Coordination and Agreement

4.4. Multicast communication

Basic Multicast

- $B\text{-}multicast(g, m)$: for each process $p \in g$, $send(p, m)$
- $B\text{-}deliver(m)$: if message m is received at p return the message m

Ack Implosion

- if too many processes participate
- if $send$ uses acknowledgments, some of them could be dropped
- then the messages could be retransmitted
- further $acks$ are lost due to full buffers etc.
Reliable Multicast

- **Safety: Integrity**
 - Every message is delivered at most once
 - Receiver of m is a member of $\text{group}(m)$
 - Sender has initiated a $\text{multicast}(g, m)$

- **Liveness: Validity**
 - If a correct process multicasts a messages then it eventually delivers m (to itself)

- **Agreement**
 - If a correct process delivers m then all other processes eventually deliver m
Implementing Reliable Multicast over Basic Multicast

On initialization

\[\text{Received} := \{\}; \]

For process \(p \) to \(R \)-multicast message \(m \) to group \(g \)

\[B\text{-multicast}(g, m); \quad \text{// } p \in g \text{ is included as a destination} \]

On \(B\text{-deliver}(m) \) at process \(q \) with \(g = \text{group}(m) \)

\[
\begin{align*}
\text{if } (m \not\in \text{Received}) \\
\text{then} \\
\quad \text{Received} := \text{Received} \cup \{m\}; \\
\quad \text{if } (q \neq p) \text{ then } B\text{-multicast}(g, m); \text{ end if} \\
\text{end if} \\
\text{R\text{-deliver } } m;
\end{align*}
\]

Each message needs to be sent \(|g|\) times!
Implementing Reliable Multicast over IP Multicast

- **$R\text{-multicast}(g, m)$** for sending process p
 - Sender increments a (sending) sequence number S_g^p for group g after each messages
 - Sequence number sent with message
 - Acknowledgements of all received messages with $\langle q, R_q^g \rangle$ are piggy backed with message
 - Negative Acknowledgments: by received sequence number R_q^g causes retransmission of message

- **$R\text{-deliver}(g)$** for receiving process q
 - R_q^g is the sequence number of the latest message it has delivered.
 - It is send with each acknowledgment and allows the sender (and all receivers) to learn about missing messages
 - Process q delivers a message m (with piggy backed S) only if $S = R_q^g + 1$.
 - Messages with $S > R_q^g + 1$ are kept in a hold-back queue
 - Messages with $S < R_q^g + 1$ are erased
 - After delivery $R_q^g := R_q^g + 1$
Hold-Back Queue for Arriving Multicast Messages
Ordered Multicast

- **FIFO Ordering**
 - If a process casts \(\text{multicast}(g, m) \) before \(\text{multicast}(g, m') \)
 - then \(m \) is delivered before \(m' \)
 - in each process of group \(g \)

- **Causal Ordering:**
 - If \(\text{multicast}(g, m) \rightarrow \text{multicast}(g, m') \)
 - then \(m \) is delivered before \(m' \)
 - \(\rightarrow \) is based only on messages within the group \(g \)

- **Total Ordering:**
 - If a process delivers \(m \) before \(m' \)
 - then \(m \) is delivered before \(m' \) on any other process of \(g \)
Total, FIFO and Causal Ordering

- **Total Ordering**

- **FIFO Ordering**

- **Causal Ordering**
Bulletin Board

Bulletin board: *os.*interesting

<table>
<thead>
<tr>
<th>Item</th>
<th>From</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>A.Hanlon</td>
<td>Mach</td>
</tr>
<tr>
<td>24</td>
<td>G.Joseph</td>
<td>Microkernels</td>
</tr>
<tr>
<td>25</td>
<td>A.Hanlon</td>
<td>Re: Microkernels</td>
</tr>
<tr>
<td>26</td>
<td>T.L’Heureux</td>
<td>RPC performance</td>
</tr>
<tr>
<td>27</td>
<td>M.Walker</td>
<td>Re: Mach</td>
</tr>
<tr>
<td>end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **FIFO Ordering**
- **Causal Ordering**
- **Total Ordering**
Implementing FIFO Ordering Multicast

- Use sequence numbers for each message
 - \(S^p_g \) for each sender process \(p \) and group \(g \)
 - \(R^p_g \) for the last message delivered to process \(p \) of group \(g \)
- Multiast over IP Multicast satisfies FIFO ordering
- Essential components for FIFO ordering:
 - Sender piggy backs \(S^p_g \) on the message
 - Receiver checks whether received message satisfies \(S = R^q_g + 1 \)
 - and delivers \(m \) and sets \(R^q_g := R^q_g + 1 \).
 - if \(S > R^q_g + 1 \) it puts \(m \) into the hold-back queue
- In combination of a reliable multicast we obtain a reliable FIFO ordering multicast algorithm
Implementing Total Ordering Multicast with a Sequencer

1. Algorithm for group member p

 \[\text{On initialization: } r_g := 0;\]

 \[\text{To TO-multicast message } m \text{ to group } g \]
 \[B\text{-multicast}(g \cup \{\text{sequencer}(g)\}, <m, i>);\]

 \[\text{On } B\text{-deliver(<m, i>) with } g = \text{group(m)}\]
 \[\text{Place } <m, i> \text{ in hold-back queue; }\]

 \[\text{On } B\text{-deliver(m}_{order} = <\text{“order”, i, S}> \text{ with } g = \text{group(m}_{order})\]
 \[\text{wait until } <m, i> \text{ in hold-back queue and } S = r_g;\]

 \[\text{TO-deliver m}; \quad \text{// (after deleting it from the hold-back queue)}\]

 \[r_g = S + 1;\]

2. Algorithm for sequencer of g

 \[\text{On initialization: } s_g := 0;\]

 \[\text{On } B\text{-deliver(<m, i>) with } g = \text{group(m)}\]

 \[B\text{-multicast}(g, <\text{“order”, i, s}_g>);\]

 \[s_g := s_g + 1;\]
Implementing Total Ordering Multicast using ISIS

- Used in the ISIS toolkit of Birman & Joseph
- Each participating process proposes a sequence number for a message
 - All proposed message numbers are unique
 - The sender chooses the maximum of all proposals and sends this information (piggy backed with the next messages)
 - This agreed sequence number defines the ordering of the hold-back-queue
 - The smallest elements of the hold-back queue can be delivered as the first element
- Does not imply causal nor FIFO ordering
Implementing Causal Ordering

- Uses vector clocks to keep causal ordering (piggy backed to messages)
- Vector clock $V_{i}^{g}[i]$ counts all multicast messages of process i in group g
- hold-back queue reflects vector clocks

Algorithm for group member p_{i} ($i = 1, 2..., N$)

On initialization

$$V_{i}^{g}[j] := 0 \ (j = 1, 2..., N);$$

To CO-multicast message m to group g

$$V_{i}^{g}[i] := V_{i}^{g}[i] + 1;$$

*B-multicast$(g, <V_{i}^{g}, m>);$$

On B-deliver(<V_{j}^{g}, m>) from p_{j}, with g = group(m) place <V_{j}^{g}, m> in hold-back queue;
wait until $V_{j}^{g}[j] = V_{i}^{g}[j] + 1$ and $V_{j}^{g}[k] \leq V_{i}^{g}[k] \ (k \neq j);$
CO-deliver m; // after removing it from the hold-back queue

$$V_{i}^{g}[j] := V_{i}^{g}[j] + 1;$$
4.5: Consensus

- n processes p_1, \ldots, p_n
- at most f processes have arbitrary (Byzantine) failures
- Every process starts in the undecided state and proposes a value v_i
- Eventually all correct processes p_i
 - choose the decided state
 - and choose the same value $d_i \in \{v_1, \ldots, v_n\}$
 - and stay in this state
4. Coordination and Agreement

4.5. Consensus

Consensus Problem

- **Termination**: Eventually each correct process p_i is decided by setting variable d_i.
- **Agreement**: The decision value d_i of all correct processes is the same.
- **Integrity**: If all correct process proposed the same value v, then $d_i = v$ for all correct p_i.

- Possible decision functions: *majority*, *minimum*, *maximum*, ...
- Byzantine failures can cause irritating and adversarial messages.
- System crashes may not be detected.
Byzantine Generals Problem

- n generals have to agree on attack or retreat
- one of them is the commander and issues the order
- at most f generals are traitors (possibly also the commander) and have adversarial behavior
- all correct generals have eventually to agree on the commander decision if he acts correctly

Consensus Problem

- **Termination**: Eventually each correct process p_i is *decided* by setting variable d_i
- **Agreement**: The decision value d_i of all correct processes is the same
- **Integrity**: If the commander is correct then all correct processes choose the commander's proposal
Interactive Consistency

- n processes need to agree on a vector of values
- Each process proposes a value v_i
- A correct process eventually decide on a vector $d_i = \{d_{i,1}, \ldots, d_{i,n}\}$ where

\[d_{i,j} = v_j \quad \text{if } p_j \text{ is correct}\]

Interactive Consistency

- **Termination**: Eventually each correct process p_i is decided by setting variable d_i
- **Agreement**: The decision value d_i of all correct processes is the same
- **Integrity**: If the p_j is correct then all correct processes p_i set $d_{i,j} = v_j$
The Relationship between Consensus Problems

Assume solutions to Consensus (C), Byzantine generals (BG), interactive consistency (IC)

\[C_i(v_1, \ldots, v_n) = \text{consensus decision value of } p_i \text{ for proposals } v_i \]
\[BG_i(j, v) = \text{BG decision value of } p_i \text{ for commander } p_j \text{ proposal } v_j \]
\[IC_i(v_1, \ldots, v_n)[j] = j\text{-th position of interactive consistency decision vector of } p_i \text{ for proposals } v_i \]

Solving IC from BG

- In parallel \(n \) Byzantine generals problems are solved
- each process \(p_j \) acts as commander once

\[IC_i(v_1, \ldots, v_n)[j] = BG_i(j, v) \]
The Relationship between Consensus Problems

Solving C from IC

- *majority* returns the most often parameter or \perp if no such value exists
- for all $i = 1, \ldots, n$

$$C_i(v_1, \ldots, v_n) = \text{majority}(IC_i(v_1, \ldots, v_n)[1], \ldots, IC_i(v_1, \ldots, v_n)[n])$$

Solving BG from C

- The commander p_j sends its proposed value to itself and each other process
- All processes run consensus with the values v_1, \ldots, v_n received from the commander
- for all $i = 1, \ldots, n$

$$BG_i(j, v) = C_i(v_1, \ldots, v_n)$$
Consensus in a Synchronous System

- Assume that there are no arbitrary (Byzantine) errors
- Given a synchronous distributed systems (fail-stop model)
- Use basic multicast for $f + 1$ rounds
- Multicast all known values of all participants
- $Values^r_i$ denotes the set of proposed variables at the beginning of round r
- Reduce communication overhead by multicasting only freshly arrived variables $Values^r_i - Values^{r-1}_i$
- Choose the minimum of all known values as final value
Consensus in a Synchronous System

Algorithm for process $p_i \in g$; algorithm proceeds in $f + 1$ rounds

On initialization

$Values_i^1 := \{v_i\}; \ Values_i^0 = \{\}$;

In round r ($1 \leq r \leq f + 1$)

B-multicast(g, $Values_i^r - Values_i^{r-1}$); // Send only values that have not been sent

$Values_i^{r+1} := Values_i^r$;

while (in round r)

{

On B-deliver(V_j) from some p_j

$Values_i^{r+1} := Values_i^{r+1} \cup V_j$;

}

After $(f + 1)$ rounds

Assign $d_i = \text{minimum}(Values_i^{f+1})$;
Consensus in a Synchronous System

- There are no arbitrary errors only processes that crash and are correctly detected
- Given a synchronous distributed systems (fail-stop model)
- Correctness
 - Assume that two processes p_i and p_j have different values at round r
 - Then, in round $r - 1$ at least one process p_k has sent different values to p_i and p_j
 - Then, p_k has crashed in this round
 - Since the number of crashes is limited to f there are not enough crashes to cover each of the $f + 1$ rounds
Byzantine Generals Problem in a Synchronous System

- Assume that there are Byzantine errors
- Given a synchronous distributed system
 - crashes are detected
 - other wrong behavior can not detected, e.g. strange messages
- messages are not (digitally) signed
- at most f faulty processes

Impossibility of a solution of the Byzantine generals problem
[Lamport, Shostak, Pease 1982]

- The byzantine generals problem cannot be solved for $n = 3$ and $f = 1$.
- The byzantine generals problem cannot be solved for $n \leq 3f$.
Byzantine Generals Problem in a Synchronous System

Impossibility of a solution of the Byzantine generals problem for $n = 3$

- The Byzantine generals problem with arbitrary failures cannot be solved for $n = 3$ and $f = 1$ in a synchronous system.
 - A faulty commander sending different values to his generals
 - Cannot be distinguished from a faulty general forwarding wrong values
Solution of the Byzantine Generals Problem

- Assume that there are Byzantine errors
- Given a synchronous distributed system
- Messages are not (digitally) signed
- At most f faulty processes

Solution of the Byzantine generals problem [Pease, Shostak, Lamport 1980]

- The Byzantine generals problem can be solved for $n = 4$ and $f = 1$.
- The Byzantine generals problem can be solved for $n \geq 3f + 1$.
Solution for Four Generals and One Faulty Process

The byzantine generals problem can be solved for $n \geq 4$ and $f = 1$.

Algorithm of Pease et al.

1. The commander sends a value to all other generals (lieutenants)
2. All lieutenants send the received value to all other lieutenants
3. The commander chooses its value; the lieutenants compute the majority of all received values

- Since $n \geq 4$ the majority function always can be computed if at most one process is faulty
- If the commander crashes very early then all lieutenants agree on \bot
More About the Byzantine Generals Problems

- For \(f > 1 \) the algorithm can be used recursively
 - Complexity: \(f + 1 \) rounds and \(O(n^{f+1}) \) messages
 - The time complexity of \(f + 1 \) rounds is optimal
- With the help of signed messages
 - any number of faulty generals \(f < n \) can be dealt with
 - with signed messages the Byzantine Generals problem can be solved in \(f + 1 \) rounds with \(O(n^2) \) messages [Dolev & Strong 1983]
- For asynchronous systems with crash failures
 - No algorithm can reach consensus even if only one processor is faulty [Fischer, Lynch, Paterson 1985]
 - Each algorithm that tries to reach consensus can be confronted with a faulty process which influences the result if it continues (instead of crashing)
End of Section 4