University of Freiburg, Germany
Department of Computer Science

Distributed Systems

Chapter 4 Coordination and Agreement

Christian Schindelhauer

13. May 2013

Christian Schindelhauer Distributed Systems 13. May 2013

4.1: Introduction

Coordination in the absence of master-slave relationship
Failures and how to deal with it

Distributed mutual exclusion

Agreement is a complex problem

Multicast communication

Byzantine agreement

Assumptions
m Channels are reliable Q
m The network remains connected
m Process failures are not a threat to the C,ﬁftr:d (5
communication
m Processes only fail by crashing

Christian Schindelhauer Distributed Systems 13. May 2013

Failure Detectors

m Failure detector is a service answer queries about the failures of other
processes
m Most failure detectors are unreliable failure detectors

m Returning either suspected or unsuspected
m suspected: some indication of process failure
m unsuspected: no evidence for process failure

m Reliable failure detector

m Returning either failed or unsuspected
m failed: detector has determined that the process has failed
m unsuspected: no evidence for failure

Example of an unreliable failure detector

m Each process p sends a 'p is here’ message to every other process every T seconds

m If the message does not arrive within T + D seconds then the process is reported
as Suspected

Christian Schindelhauer Distributed Systems 13. May 2013

4.2: Distributed Mutual Exclusion

m Problem known from operating systems (there: critical sections)

m How to achieve mutual exclusion only with messages

Application-Level Protocol

enter() enter critical section — block if necessary
resourceAccesses() access shared resources in critical section
exit() leave critical section — other processes may enter

Essential Requirements

MEL: Safety At most one process may execute the critical section at a
time

ME2: Liveness Requests to enter and exist the critical section eventually
succeed

ME3: — ordering requests enter the critical section according to the
happened-before relationship

Christian Schindelhauer Distributed Systems 13. May 2013

4. Coordination and Agreement

Performance of algorithms for mutual exclusion

m Bandwidth consumed: proportional to the number of messages sent in each
entry and exit operation

m Client delay at each entry and exit operation
m Throughput rate of several processes entering the critical section

m Throughput is measured by the synchronization delay between one process
exiting the critical section and the next process entering it

m short synchronization delay correspond to high throughput

Christian Schindelhauer Distributed Systems 13. May 2013

Central Server Algorithm

Server
Queue of
requests

3. Grant
loken
1. Request
token, 2. Release p
[.71 token 4

Py

P,

from Distributed Systems — Concepts and Design, Coulouris, Dollimore, Kindberg

m Simplest solution
m Request are handled by queues
m Performance

m Entering the critical section: two messages (request, grant)
m Leaving the critical section: one message (release)

m Server is performance bottleneck

Christian Schindelhauer Distributed Systems 13. May 2013

Ring Based Algorithm

Simplest distributed solution

)

Arrange processes as ring (not related to

~ g \ physical network)

A token (permission to enter critical section)

—~
]

) is passed around
\ ” m Conditions ME1 (safety) and ME2 (liveness)
‘ are met
Nl // m ME3: — ordering is not fulfilled
m Continuous consumption of bandwidth

from Distributed Systems — Concepts and Design,

Synchronisation delay is between 1 and n
messages.

Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 13. May 2013

The Algorithm of Ricart and Agrawala

m Mutual exclusion between n peer processes p1, pa, .- ., pn Which
® have unique numeric identifiers
m possess communication channels to one another
m keep Lamport clocks attached to the messages
m Process states
m released: outside the critical section
m wanted: wanting to enter critical section
m held: being in the critical section
m Each process released immediately answers a request to enter the critical
section

The process with held does not reply to requests until it is finished

If more than one process requests the entry, the first one collecting the
n — 1 replies is allowed to enter the critical section.

If the Lamport clocks of the latest messages do not differ, the numeric ID
is used to break the tie.

Christian Schindelhauer Distributed Systems 13. May 2013

The Algorithm of Ricart and Agrawala

On initialization
state := RELEASED;

To enter the section
state .= WANTED;
Multicast request to all processes;
T :=request’s timestamp;
Wait until (number of replies received = (N — 1));
state := HELD;

(request processing deferred here

On receipt of a request <T;, p> at p; (i # j)
if (state = HELD or (state = WANTED and (T, pj) <(T;,p))
then
queue request from p; without replying;
else
reply immediately to p;;
end if Reply
To exit the critical section

state := RELEASED; eply
reply to any queued requests; Reply
4
,)2)

Christian Schindelhauer Distributed Systems 13. May 2013

41

wO

from Distributed Systems — Concepts and Design, Coulouris, Dollimore, Kindberg

The Algorithm of Ricart and Agrawala

Mutual exclusion properties
m MEL (safety): processes in state held prevent other ones from entering the
cs
m ME2 (liveness): follows from the ordering
m ME3 (ordering): follows from the use of Lamport clocks

Cost of gaining access: 2(n — 1) messages
m n — 1 for multicast of request
m n— 1 for replies

Client delay for requesting entry: a round-trip message

Synchronization delay is one message transmission time

Christian Schindelhauer Distributed Systems 13. May 2013

Maekawa's Voting algorithm

m Reduce the number of messages by asking a
subset

m For each process p; choose a voting setV; such
that
pi €V
VinV;#0foralli,j
|Vi| = k for all i (fairness)
B Each process occurs in at most m voting sets

m Minimal choice of max{m, k} is k,m € ©(y/n).

m The optimal solution can be approximated by
placing all nodes in a square matrix and
choosing the row and column as voting set.

from

Distributed Systems — Concepts and Design, Coulouris, Dollimore, Kindberg

Christian Schindelhauer Distributed Systems 13. May 2013

Maekawa's Voting algorithm

On initialization
state == RELEASED;

voted := FALSE; For p, to exit the critical section
For p; to enter the critical section state := RELEASED;
state := WANTED; Multicast release to all processes in V;

Multicast request to all processes in V;;

On receipt of a release from p, at p;
Wait until (number of replies received = K); ' 4

if (queue of requests is non-empty)

state := HELD; then
On receipt of a request from p; at p; remove head of queue — from p,, say;
if (state = HELD or voted = TRUE) send reply to p,;
then voted := TRUE;
queue request from p, without replying; else
else voted := FALSE;
send reply to p;; end if
voted := TRUE;
end if

Christian Schindelhauer Distributed Systems 13. May 2013

Maekawa's Voting algorithm

Mutual exclusion properties

m ME1 (safety): follows from the intersections
of Vi and V;
m ME2 (liveness): not guaranteed.

m Sanders improved this algorithm to achieve
ME2 and ME3 (not presented here)
m Cost

m 2k per entry to the critical section
m k for exit
m O(+/n) messages

m Client delay for requesting entry: a round-trip
message

Synchronization delay is a round-trip message

Christian Schindelhauer Distributed Systems 13. May 2013

Mutual Exclusion

Fault Tolerance

m What happens when messages are lost

m What happens when process crashes

m All of the above algorithms presented fail

m We will revisit this problem

Christian Schindelhauer Distributed Systems 13. May 2013

4. Coordination and Agreement

4.3: Elections
Election Algorithm

m An algorithm for choosing a unique process from a set of processes
P1;---5Pn-
m A process calls the election if it initiates a run of an election algorithm

m Several elections could run in parallel where subset of processes are
participants or non-participants.

m We assume processes have numeric IDs and that wlog. the process with the
highest will be chosen.

Requirements

E1l: Safety During the run each participant has either elected; = L or
elected; = P, where P is the non-crashed process with the
largest ID

E2: Liveness All participating processes p; eventually set elected; % |
or crash.

Christian Schindelhauer Distributed Systems 13. May 2013

Ring-Based Election: Algorithm of Chang and Roberts

m Each process p; has a
communication channel to the next
process in the ring p(i;1) mod n

. 5P,
m Messages are sent clockwise / 17
m Assumption: no failures occur 2 \
m Non-participants are marked / 29
m When a process receives an election 9)
message, it compares the identifier \
. . . 1
m If the arrived ID is greater, it
forwards it 15 /
m if the arrived ID is smaller and AN P
.. . ~ ~— /
the process participates, it -
replaces it with its ID Note: The election was started by process 17.
m if the arrived ID equals the The highest process identifier encountered so far is 24.

. Participant processes are shown darkened
process ID, the process is elected

and sends an elected message
around (with its ID).

Christian Schindelhauer Distributed Systems 13. May 2013

Ring-Based Election: Algorithm of Chang and Roberts

m E1 (Safety): follows directly

m E2 (Liveness): follows in the / 3T
absence of crashes and

. . 4
communication errors / \

. . 24
m Worst-case performance if a single
node participates in the process 9)
m Time: 3n — 1 messages for the \ q
election /
15 /
m Not very practical algorithm N
. i~ %
fault-prone and high - -
communication overhead Note: The election was started by process 17.
. k | d . The highest process identifier encountered so far is 24.
B assumes a-priori knowledge (nng Participant processes are shown darkened
topology)

Christian Schindelhauer Distributed Systems 13. May 2013

The Bully Algorithm of Garcia & Molina

m The distributed system is assumed to be synchronous
m i.e. after a timeout period T a missing answer is interpreted as crash
m reliable failure detector
m fail-stop model

m Message types

m election: Announces an election
m answer: Answers election message (contains 1D)
m coordinator: Announces the identity of the elected process

m Any process may trigger an election

m Every process receiving an election messages sends an answer and starts a
new one (if it has not started one before).

m If a process knows it has the highest ID (based on the answers) it sends the
coordinator message to all processes

m If answers of lower IDs fail to arrive within time T the sender considers
itself a coordinator and sends the coordinator message

Christian Schindelhauer Distributed Systems 13. May 2013

The Bully Algorithm of Garcia & Molina

election
H Stage 1 ><
mifa process receives an : o

election message it sends " P,
back an answer messages answer slection

and l.)eglns .an.other mc
election — if it has not Stage 2

. answer
begun an election P1 P, ~——P, P,

m If a process knows it has
the highest ID it sends the RGOt ><

. Stage 3
coordinator message
. P, P, P, P
m New arriving processes 4
with higher ID ,,bully" Eventualy... coordinator
existing cordinators ¢
Stage 4 >< ><
Py P Py P,

Christian Schindelhauer Distributed Systems 13. May 2013

The Bully Algorithm of Garcia & Molina

E2: liveness condition is guaranteed if messages are transmitted reliably

E1l: safety condition: Not guaranteed if processes are replaced by processes
with the same identifier

different conclusions on which is the coordinator process

E1l not guaranteed if the timeout value is too small

m In the worst case the algorithm needs O(n?) messages for n processes

Christian Schindelhauer Distributed Systems 13. May 2013

4.4: Multicast communication

m With a single call of multicast(g, m) a process sends a message to all
members of the group g
m Using deliver(m), received messages are delivered on participating processes
m Efficiency
m Number of messages, transmission time
m Delivery guarantees

m ordering
m receipt
m e.g. IP Multicast does not guarantee ordering of success

Christian Schindelhauer Distributed Systems 13. May 2013

4.4: Multicast communication

O,
m System Model \
—7 (& multicast(g, m): sends the message m to all /Q)
members of group g O

—p @ deliver(m): delivers a message to the process
(message has been received by lower level)
m sender(m): sender of a message m (within the)k
message header)
m group(m): group of a message m (within the
message header)

@)
m Allowed senders / \O

Closed group

m closed group: senders must be members of a o
group

m open group: any process can send a message to Opsniroup
the group

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Basic Multicast

m B-multicast(g, m): for each process p € g, send(p, m)
m B-deliver(m): if message m is received at p return the message m

Ack Implosion
m if too many processes participate
m if send uses acknowledgments, some of them could be dropped
m then the messages could be retransmitted

m further acks are lost due to full buffers etc.

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Reliable Multicast

m Safety: Integrity
m Every message is delivered at most once
m Receiver of m is a member of group(m)
m Sender has initiated a multicast(g, m)

m Liveness: \’/_@[ty

m If a correct process multicasts a messages then it eventually delivers m (to
itself)

m Agreement
— . .
m If a correct process delivers m then all other processes eventually deliver m
L —

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Implementing Reliable Multicast over Basic Mult?—\
On initialization
O('

Received := {}; \

For process p to R-multicast message m to group g

B-multicast(g, m); /| p e g is included as a destination = 0
On B-deliver(m) at process q with g = group(m)

if (m & Received)

then
Received .= Received U {m};
if (g # p) then B-multicast(g, m); end if
R-deliverm;

end if

Each message needs to be sent |g| times!

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Implementing Reliable Multicast over IP Multicast

Y
m R-multicast(g, m) for sending process p J
m Sender increments a (sending) sequence number S for group g after each
messages =
m Sequence number sent with message l /

[Acknowledgements of all received messages with (g, Rq) are piggybacked
with message

m Negative Acknowledgments: by received sequence number R causes
retransmission of message

m R-deliver(g) for receiving process ¢

[@ the sequence number of the latest message it has delivered.

m it is sent with each acknowledgment and allows the sender (and all
receivers) to learn about missing messages
Process q delivers a message m (with piggybacked S) only if S = R + 1.
messages with S > R + 1 are kept in a hold-back queue
messages with S < R9°+ 1 are_erased
After delivery R{ := Rq +1

e

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Hold-Back Queue for Arriving Multicast Messages

Message
processing

+de|iver
||

Hold-back
|| Delivery queue

When delivery
guarantees arg

Incoming
messages

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Agi»-y &OL,/A'

A 0:5,
[J
_Ordered Multicast > \,’s

—Y m FIFO Ordering
m If a process casts multicast(g, m) before mlticast(g, m’)
m then m is delivered before m’
m in each process of group g
— m Causal Ordering: Q, D0,
m If multicast(g, m) — multicast(g,m’) =P
m then m is delivered before m
m_— is based only on messages within the group g
— m Total Ordering:
m If a process delivers m before m’
m then m is delivered before m’ on any other process of g

Sv%l‘r“i ‘UQ(\

S
bt —-Svealfen
u—& """“Q|

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Total, FIFO and Causal Ordering

T

m Total Ordering

: 1
[F/FO Ordering +

5t) . -

| 1
m Causal Ordering :)

—_—

Christian Schindelhauer

Distributed Systems

13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

4. Coordination and Agreement

Bulletin Board

Bulletin board: 0S.interesting

Item From Subject

23 A Hanlon Mach

24 G.Joseph Microkernels ’D
25 A Hanlon Re: Microkernels

26 T.L’Heureux RPC performance
—_——
27 M.Walker Re: Mach

end

u_FIFO Ordering

m Causal Ordering

m Total Ordering L
(]

Christian Schindelhauer Distributed Systems

13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Implementing FIFO Ordering Multicast |TC P}

"") (_wiwdov 7

— | —
—— 0
m Use sequence numbers for each message L w0l

m_S? for each sender process p and group g
m Rf for the last message delivered to process p of group g

Multiast over IP Multicast satisfies FIFO ordering
—_ T °
m Essential components for FIFO ordering:

Sender piggybacks S on the message

m Receiver checks wether received message satisfies S = R7 4 1
m and delivers m and sets Ry := R +1. -
m if S > RJ + 1 it puts m into the hold-back queue

m In combination of a reliable multicast we obtain a reliable FIFO ordering
. . ‘\
multicast algorithm

=

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

4. Coordination and Agreement

Implementing Total Ordering Multicast with a Sequencer

m A sequencer is an

extra process
taking care about
ordering

A sender process
sends message
with unique ID /
to sequencer
Sequencer marks
message with
ordering and
multicasts the
message

Christian Schindelhauer

\

1. Algorithm for group member p

On initialization: P 0;

To TO-multicast message m to group g

B-multicast(g w { sequencer , <m, i>);
On B-deliver(<m, i>) with g = group(m)
Place <m, i> in -back queue;
On B-deliver(m,,,,, = <‘order”. i, $>) with g = group(m,,4.,)
wait until <m, i> in hold-back queue and S = r_;
TO-deliver m; // (after deleting it from the hold-back queue)

rg =S+1;
—_——

2. Algorithm for sequencer of g
On initialization: S 1= 0;

_ '
On B—deliver%) with g = group(m)
B-multicast(g, < ‘order”, i, Sg >);

s =5 +1:
Sg ég "

Distributed Systems

13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Implementing Total Ordering Multicast using ISIS

12y 0% 2 0§
L |
m Used in the ISIS toolkit of Birman &
\——/-’

Joseph 3 (L!
@ Each participating process proposes a
sequence number for a messages
m All proposed message numbers are unique
m The sender chooses the maximum of all
proposals and sends this information
(piggybacked with the next messages)
m This agreed sequence number defines the
ordering of the hold-back-queue
m The smallest elements of the hold-back
queue can be delivered as the first
element

m Does not imply causal nor FIFO ordering

e

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Implementing Causal Ordering (4,2)JVQZ. ()

m Uses vector
clocks to keep Algorithm for group member p; (i = 1,2..., N)
causal ordering o
On initialization

iggybacked to y

e VELLZ0(= 1,200 N;

To CO-multicast message m to group g
Vel = Vil + 1; o—
B-multicast(g, < V m>);CGq—

m Vector clock
VE[i] counts all

multicast

messages of On B-deliver (<V m>) from Py with g = group(m)
process i in place < Ve, m> in hold- back queue;

group g wait until 4[] = VE[j1+ 1and VE[K < VELA] (k)

CO—delzvir m, /! after removing it from tﬁe hold-back queue
HNENFVIESE
A

old-back queue
reflects vector
clocks

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

4. Coordination and Agreement Page 35

4.5: Consensus

B N processes pi, ..., Pn B di:=proceed dy:=proceed 5
1 2
m at most f processes have arbitrary
(Byzantine) failures
v4=proceed vy=proceed

m Every process starts in the
undecidedstate and proposes a

value v; Consensus algorithm

m Eventually all correct processes p;

m choose the decided state
m and choose the same value vg=abort

d,'G{Vl,‘.. Vp
® ‘and stay in this state ><P3 (crashes)
al eyt owe worl ove fropond
fL, J‘o/t)(,'u'—-

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

4. Coordination and Agreement Page 36

Consensus Problem

m Termination: Eventually each
correct process p; is decided by dy:=proceed dy:=proceed

5 . —_— P4 Py
setting variable d;

m Agreement: The decision value d|
= .
of all correct processes is the same

vi=proceed vo=proceed

m Integrity: If all correct process
proposed the same value v, then

d; = v for all correct p;

Consensus algorithm

. .. . vz=abort
m Possible decision functions: # T
majority, minimum, maximum, . ..
[ority, _— ><P3 (crashes)

—_—

(@ Byzantine failures can cause
irritating and adversarial messages

@ System crashes may not be
detected

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Byzantine Generals Problem M
,(1'

m n generals have to agree on attack or retreat
— o =

m one of them is the commander and issues the order

m at most f generals are traitors (possibly also the commander) and have
adversarial behavior

m all correct generals have eventually to agree on the commander decision if
. omander Tt
he acts correctly

Consensus Problem

m Termination: Eventually each correct process p; is decided by setting
variable d;

m Agreement: The decision value d; of all correct processes is the same

e
m Integrity: If the_commander is correct then all correct processes choose the
commander's proposal

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

. . 2 .0 §S-
Interactive Consistency >) (129,37

(3,7 3)

m n processes need to agree on a vector of values
e — _—
m Each process proposes a value v;

m A correct processes eventually decide on a vector d; = {d;1,...,d; »} where
R,

dij=v; if pjis correct

—_—

Interactive Consistency

m Termination: Eventually each correct process p; is decided by setting
variable d;

m Agreement: The decision value d; of all correct processes is the same

m Integrity: If the p; is correct then all correct processes p; set d;i; = v;

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

The Relationship between Consensus Problems

Assume solutions to Consensus (C), Byzantine generals (BG), interactive

consistency (I1C S
Ci(vi,...,vs) = consensus decision value of p; for proposals v;
BGj(j,v) = BG decision value of p; for commander p; proposal v;
ICi(vi,...,va)[j)] = J-th position of interactive consistency

decision vector of p; for proposals v;

&~ N\
Solving IC from BG

m In parallel n Byzantine generals problems are solved

m each process p; acts as commander once

ICi(va, -, va)lJ] = BGi(j, v)

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

The Relationship between Consensus Problems

(COIN ‘7 (
Solving C from IC Lz, ’C/

m majority returns the most often parameter or L if no such value exists

mforalli=1....n

Ci(v, ..., vs) = majority(IC;(va, ..., va)[1], ..., ICi(va,. .., va)[n])

&
Solving BG from C

m The commander p; sends its proposed value to itself and each other process

m All processes run consenus with the values vy, ..., v, received from the
o SOnSETEs W
commander
mforalli=1,....n

BGi(j,v) = Ci(v1, -, Va)

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Consensus in a Synchronous System

Assume that there are no arbitrary (By_zw

Given a synchronous distributed systems (fail-stop model)

Use basic multicast for f + 1 rounds

Multicast all known values of all participants

Values; denotes the set of proposed variables at the beginning of round r_

Reduce communication overhead by multicasting only freshly arrived
variables Values] — Values, "

Choose the minimum of all known values as final value

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Consensus in a Synchronous System

Algorithm for process p; € g; algorithm proceeds in '+ 1 rounds
On inirialilzarion 3
Values; = {v;}; Values; = {};
Inroundr(l<r<f+1) d
B- multlcasth Values, — Values); // Send only values that have not been sent

Values = Values,;
while (1n round r)
{

On B- delnjrer(V) from some p,
Values = Values 'y V

}

After (f + 1) rounds :
Assign d; = mzmmum(Valuesf);

Christian Schindelhauer Distributed Systems 13. May 2013

Consensus in a Synchronous System

m There are no arbitrary errors only processes that crash and are correctly
detected

m Given a synchronous distributed systems (fail-stop model)
m Correctness

m Assume that two processes p; and p; have different values at round r

m Then, in round r — 1 at least one process px has sent different values to p;
and p;

m Then, px has crashed in this round

m Since the number of crashes is limited to f there are not enough crashes to
cover each of the f 4 1 rounds

Christian Schindelhauer Distributed Systems 13. May 2013

Byzantine Generals Problem in a Synchronous System

m Assume that there are Byzantine errors

m Given a synchronous distributed system

m crashes are detected
m other wrong behavior can not detected, e.g. strange messages

@messages are not (digitally) signed , ie. P= VP L
m at most f faulty processes

Impossibility of a solution of the Byzantine generals problem
[Lamport, Shostak, Pease 1982]

m The byzantine generals problem cannot be solved for n = 3 an@

m The byzantine generals problem cannot be solved fofn < 3f.E)

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Byzantine Generals Problem in a Synchronous System

P1(Commander)

Impossibility of a solution of the
Byzantine generals problem for n = 3

m The byzantine generals problem with oy
arbitrary failures cannot be solved for
n=3and f =1 in a synchronous
system.

m a faulty commander sending different
values to his generals

m cannot be distinguished from a faulty
general forwarding wrong values

Christian Schindelhauer Distributed Systems 13. May 2013

Solution of the Byzantine Generals Problem

m Assume that there are Byzantine errors
m Given a synchronous distributed system
m messages are not (digitally) signed
[

at most f faulty processes

Solution of the Byzantine generals problem [Pease, Shostak,
Lamport 1980] -

m The byzantine generals problem can be solved for n =4 and f = 1.

m The byzantine generals problem can be solved for n > 3f + 1.

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

Solution for Four Generals and One Faulty Process

m The byzantine generals problem can be
solved for n Z 4 and f = 1. Py (Commander)

Algorithm of Pease et al.

The commander sends a value to all other " . :
generals (lieutenants) 1 tw
All Tieutenants send the received value to all
other lieutenants P
The commander chooses its value; the p1 (Commander)

lieutenants compute the majority of all
received values

m Since n > 4 the majority function always can
be computed if at most one process is faulty

m If the commander crashes very early then all
lieutenants agree on L

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

More About the Byzantine Generals Problems

m For f > 1 the algorithm can be used recursively
—
m Complexity: f + 1 rounds and O(n"™) messages

m The time complexity of f 4+ 1 rounds is optimal
—
m With the help of signed messages

® any number of faulty generals f < n can be dealt with
m with signed messages the Byzantine Generals problem can be solved in f +1
rounds with O(n?) messages [Dolev & Strong 1983]

m For asynchronous systems with crash failures

m No algorithm can reach consensus even if only one processor is faulty
[Fischer, Lynch, Paterson 1985|

m Each algorithm that tries to reach consensus can be confronted with a faulty
process which influences the result if it continues (instead of crashing)

Christian Schindelhauer Distributed Systems 13. May 2013

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

. c ,
End of Section 4 . t\‘_ . p 2
A B < ' P2

A000°0 D

Distributed Systems 13. May 2013

Christian Schindelhauer

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

schindel
Bleistift

	Coordination and Agreement
	Introduction
	Distributed Mutual Exclusion
	Elections
	Multicast communication
	Consensus

