4.1: Introduction

- Coordination in the absence of master-slave relationship
- Failures and how to deal with it
- Distributed mutual exclusion
- Agreement is a complex problem
- Multicast communication
- Byzantine agreement

Assumptions

- Channels are reliable
- The network remains connected
- Process failures are not a threat to the communication
- Processes only fail by crashing
Failure Detectors

- Failure detector is a service answer queries about the failures of other processes.
- Most failure detectors are **unreliable failure detectors**
 - Returning either suspected or unsuspected
 - suspected: some indication of process failure
 - unsuspected: no evidence for process failure
- **Reliable failure detector**
 - Returning either failed or unsuspected
 - failed: detector has determined that the process has failed
 - unsuspected: no evidence for failure

Example of an unreliable failure detector

- Each process p sends a ‘p is here’ message to every other process every T seconds
- If the message does not arrive within $T + D$ seconds then the process is reported as Suspected
4.2: Distributed Mutual Exclusion

- Problem known from operating systems (there: *critical sections*)
- How to achieve mutual exclusion only with messages

Application-Level Protocol

- `enter()` enter critical section – block if necessary
- `resourceAccesses()` access shared resources in critical section
- `exit()` leave critical section – other processes may enter

Essential Requirements

- ME1: Safety At most one process may execute the critical section at a time
- ME2: Liveness Requests to enter and exist the critical section eventually succeed
- ME3: → ordering requests enter the critical section according to the *happened-before* relationship
Performance of algorithms for mutual exclusion

- **Bandwidth** consumed: proportional to the number of messages sent in each *entry* and *exit* operation
- **Client delay** at each *entry* and *exit* operation
- **Throughput** rate of several processes entering the critical section
 - Throughput is measured by the *synchronization delay* between one process exiting the critical section and the next process entering it
- short *synchronization delay* correspond to high *throughput*
Central Server Algorithm

- Simplest solution
- Request are handled by queues
- Performance
 - Entering the critical section: two messages (*request*, *grant*)
 - Leaving the critical section: one message (*release*)
- Server is performance bottleneck

from *Distributed Systems – Concepts and Design*, Coulouris, Dollimore, Kindberg
Ring Based Algorithm

- Simplest distributed solution
- Arrange processes as ring (not related to physical network)
- A token (permission to enter critical section) is passed around
- Conditions ME1 (safety) and ME2 (liveness) are met
- ME3: → ordering is not fulfilled
- Continuous consumption of bandwidth
- Synchronisation delay is between 1 and n messages.

from *Distributed Systems – Concepts and Design*, Coulouris, Dollimore, Kindberg
The Algorithm of Ricart and Agrawala

- Mutual exclusion between \(n \) peer processes \(p_1, p_2, \ldots, p_n \) which
 - have unique numeric identifiers
 - possess communication channels to one another
 - keep Lamport clocks attached to the messages

- Process states
 - \textit{released}: outside the critical section
 - \textit{wanted}: wanting to enter critical section
 - \textit{held}: being in the critical section

- Each process \textit{released} immediately answers a request to enter the critical section
- The process with \textit{held} does not reply to requests until it is finished
- If more than one process requests the entry, the first one collecting the \(n - 1 \) replies is allowed to enter the critical section.
- If the Lamport clocks of the latest messages do not differ, the numeric ID is used to break the tie.
The Algorithm of Ricart and Agrawala

On initialization
state := RELEASED;

To enter the section
state := WANTED;
Multicast request to all processes;
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request \(<T_i, p_i>\) at \(p_j\) \((i \neq j)\)
if \((\text{state} = \text{HELD} \text{ or } (\text{state} = \text{WANTED} \text{ and } (T, p_j) < (T_i, p_i)))\)
then
queue request from \(p_i\) without replying;
else
reply immediately to \(p_i\);
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;

from Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
The Algorithm of Ricart and Agrawala

- Mutual exclusion properties
 - ME1 (safety): processes in state `held` prevent other ones from entering the CS
 - ME2 (liveness): follows from the ordering
 - ME3 (ordering): follows from the use of Lamport clocks
- Cost of gaining access: $2(n - 1)$ messages
 - $n - 1$ for multicast of request
 - $n - 1$ for replies
- Client delay for requesting entry: a round-trip message
- Synchronization delay is one message transmission time
Maekawa’s Voting algorithm

- Reduce the number of messages by asking a subset
- For each process p_i choose a voting set V_i such that
 1. $p_i \in V_i$
 2. $V_i \cap V_j \neq \emptyset$ for all i, j
 3. $|V_i| = k$ for all i (fairness)
 4. Each process occurs in at most m voting sets
- Minimal choice of $\max\{m, k\}$ is k, $m \in \Theta(\sqrt{n})$.
- The optimal solution can be approximated by placing all nodes in a square matrix and choosing the row and column as voting set.

Distributed Systems – Concepts and Design, Coulouris, Dollimore, Kindberg
Maekawa’s Voting algorithm

On initialization

\[\text{state} := \text{RELEASED}; \]
\[\text{voted} := \text{FALSE}; \]

For \(p_i \) to enter the critical section

\[\text{state} := \text{WANTED}; \]
Multicast request to all processes in \(V_i \);
Wait until (number of replies received = \(K \));
\[\text{state} := \text{HELD}; \]

On receipt of a request from \(p_i \) at \(p_j \)

if (\(\text{state} = \text{HELD} \) or \(\text{voted} = \text{TRUE} \))
then
queue request from \(p_i \) without replying;
else
send reply to \(p_i \);
\[\text{voted} := \text{TRUE}; \]
end if

For \(p_i \) to exit the critical section

\[\text{state} := \text{RELEASED}; \]
Multicast release to all processes in \(V_i \);

On receipt of a release from \(p_i \) at \(p_j \)
if (queue of requests is non-empty)
then
remove head of queue – from \(p_k \), say;
send reply to \(p_k \);
\[\text{voted} := \text{TRUE}; \]
else
\[\text{voted} := \text{FALSE}; \]
end if
Maekawa’s Voting algorithm

- Mutual exclusion properties
 - ME1 (safety): follows from the intersections of V_i and V_j
 - ME2 (liveness): not guaranteed.
- Sanders improved this algorithm to achieve ME2 and ME3 (not presented here)
- Cost
 - $2k$ per entry to the critical section
 - k for exit
 - $O(\sqrt{n})$ messages
- Client delay for requesting entry: a round-trip message
- Synchronization delay is a round-trip message
Mutual Exclusion

Fault Tolerance

- What happens when messages are lost
- What happens when process crashes

- All of the above algorithms presented fail
- We will revisit this problem
4.3: Elections

Election Algorithm

- An algorithm for choosing a unique process from a set of processes p_1, \ldots, p_n.
- A process calls the election if it initiates a run of an election algorithm.
- Several elections could run in parallel where subset of processes are participants or non-participants.
- We assume processes have numeric IDs and that wlog. the process with the highest will be chosen.

Requirements

E1: Safety

During the run each participant has either elected $i = \bot$ or elected $i = P$, where P is the non-crashed process with the largest ID.

E2: Liveness

All participating processes p_i eventually set elected $i \neq \bot$ or crash.
Ring-Based Election: Algorithm of Chang and Roberts

- Each process p_i has a communication channel to the next process in the ring $p_{(i+1) \mod n}$
- Messages are sent clockwise
- Assumption: no failures occur
- Non-participants are marked
- When a process receives an election message, it compares the identifier
 - If the arrived ID is greater, it forwards it
 - if the arrived ID is smaller and the process participates, it replaces it with its ID
 - if the arrived ID equals the process ID, the process is elected and sends an elected message around (with its ID).

Note: The election was started by process 17. The highest process identifier encountered so far is 24. Participant processes are shown darkened.
Ring-Based Election: Algorithm of Chang and Roberts

- E1 (Safety): follows directly
- E2 (Liveness): follows in the absence of crashes and communication errors
- Worst-case performance if a single node participates in the process
- Time: $3n - 1$ messages for the election
- Not very practical algorithm fault-prone and high communication overhead
- Assumes a-priori knowledge (ring topology)

Note: The election was started by process 17. The highest process identifier encountered so far is 24. Participant processes are shown darkened.
The Bully Algorithm of Garcia & Molina

- The distributed system is assumed to be synchronous
 - i.e. after a timeout period T a missing answer is interpreted as crash
 - reliable failure detector
 - fail-stop model
- Message types
 - *election*: Announces an election
 - *answer*: Answers *election* message (contains ID)
 - *coordinator*: Announces the identity of the elected process
- Any process may trigger an *election*
- Every process receiving an *election* messages sends an *answer* and starts a new one (if it has not started one before).
- If a process knows it has the highest ID (based on the answers) it sends the *coordinator* message to all processes
- If answers of lower IDs fail to arrive within time T the sender considers itself a coordinator and sends the *coordinator* message
The Bully Algorithm of Garcia & Molina

- If a process receives an *election* message it sends back an *answer* messages and begins another election — if it has not begun an election.
- If a process knows it has the highest ID it sends the *coordinator* message.
- New arriving processes with higher ID „bully“ existing coordinators.
The Bully Algorithm of Garcia & Molina

- E2: liveness condition is guaranteed if messages are transmitted reliably
- E1: safety condition: Not guaranteed if processes are replaced by processes with the same identifier
- different conclusions on which is the coordinator process
- E1 not guaranteed if the timeout value is too small
- In the worst case the algorithm needs $O(n^2)$ messages for n processes
4.4: Multicast communication

- With a single call of $\text{multicast}(g, m)$ a process sends a message to all members of the group g.
- Using $\text{deliver}(m)$, received messages are delivered on participating processes.

Efficiency
- Number of messages, transmission time.

Delivery guarantees
- ordering
- receipt
- e.g. IP Multicast does not guarantee ordering of success.
4.4: Multicast communication

- **System Model**
 - $multicast(g, m)$: sends the message m to all members of group g
 - $deliver(m)$: delivers a message to the process (message has been received by lower level)

- **Allowed senders**
 - closed group: senders must be members of a group
 - open group: any process can send a message to the group
Basic Multicast

- **B-multicast**(g, m): for each process $p \in g$, send(p, m)
- **B-deliver**(m): if message m is received at p return the message m

Ack Implosion

- if too many processes participate
- if $send$ uses acknowledgments, some of them could be dropped
- then the messages could be retransmitted
- further $acks$ are lost due to full buffers etc.
Reliable Multicast

- **Safety: Integrity**
 - Every message is delivered at most once
 - Receiver of m is a member of $\text{group}(m)$
 - Sender has initiated a $\text{multicast}(g, m)$

- **Liveness: Validity**
 - If a correct process multicasts a message then it eventually delivers m (to itself)

- **Agreement**
 - If a correct process delivers m then all other processes eventually deliver m
Implementing **Reliable Multicast** over Basic Multicast

On initialization

\[
\text{Received} := \{\};
\]

For process \(p \) to R-multicast message \(m \) to group \(g \)

\[
\text{B-multicast}(g, m); \quad \text{// } p \in g \text{ is included as a destination}
\]

On B-deliver\((m) \) at process \(q \) with \(g = \text{group}(m) \)

\[
\text{if } (m \notin \text{Received}) \quad \text{then}
\]

\[
\text{Received} := \text{Received} \cup \{m\};
\]

\[
\text{if } (q \neq p) \text{ then B-multicast}(g, m); \quad \text{end if}
\]

\[
\text{R-deliver } m;
\]

\[
\text{end if}
\]

Each message needs to be sent \(|g|\) times!
Implementing Reliable Multicast over IP Multicast

- **R-multicast**(g, m) for sending process p
 - Sender increments a (sending) sequence number S^p_g for group g after each message
 - Sequence number sent with message
 - Acknowledgements of all received messages with $\langle q, R^q_g \rangle$ are piggybacked with message
 - Negative Acknowledgments: by received sequence number R^q_g causes retransmission of message

- **R-deliver**(g) for receiving process q
 - R^q_g is the sequence number of the latest message it has delivered.
 - It is sent with each acknowledgment and allows the sender (and all receivers) to learn about missing messages
 - Process q delivers a message m (with piggybacked S) only if $S = R^q_g + 1$.
 - Messages with $S > R^q_g + 1$ are kept in a hold-back queue
 - Messages with $S < R^q_g + 1$ are erased
 - After delivery $R^q_g := R^q_g + 1$
Hold-Back Queue for Arriving Multicast Messages

Message processing

deliver

Hold-back queue

Delivery queue

Incoming messages

When delivery guarantees are met
Ordered Multicast

- **FIFO Ordering**
 - If a process casts multicast \((g, m)\) before multicast \((g, m')\)
 - then \(m\) is delivered before \(m'\)
 - in each process of group \(g\)

- **Causal Ordering**:
 - If multicast \((g, m) \rightarrow multicast(g, m')\)
 - then \(m\) is delivered before \(m'\)
 - \(\rightarrow\) is based only on messages within the group \(g\)

- **Total Ordering**:
 - If a process delivers \(m\) before \(m'\)
 - then \(m\) is delivered before \(m'\) on any other process of \(g\)
Total, FIFO and Causal Ordering

- **Total Ordering**

- **FIFO Ordering**

- **Causal Ordering**

[Diagram showing Total, FIFO, and Causal Ordering]
Bulletin Board

Bulletin board: os.interesting

<table>
<thead>
<tr>
<th>Item</th>
<th>From</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>A.Hanlon</td>
<td>Mach</td>
</tr>
<tr>
<td>24</td>
<td>G.Joseph</td>
<td>Microkernels</td>
</tr>
<tr>
<td>25</td>
<td>A.Hanlon</td>
<td>Re: Microkernels</td>
</tr>
<tr>
<td>26</td>
<td>T.L’Heureux</td>
<td>RPC performance</td>
</tr>
<tr>
<td>27</td>
<td>M.Walker</td>
<td>Re: Mach</td>
</tr>
<tr>
<td></td>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>

- **FIFO Ordering**
- **Causal Ordering**
- **Total Ordering**
Implementing FIFO Ordering Multicast

- Use sequence numbers for each message
 - S^p_g for each sender process p and group g
 - R^p_g for the last message delivered to process p of group g

- Multicast over IP Multicast satisfies FIFO ordering

- Essential components for FIFO ordering:
 - Sender piggybacks S^p_g on the message
 - Receiver checks whether received message satisfies $S = R^q_g + 1$
 - and delivers m and sets $R^q_g := R^q_g + 1$
 - if $S > R^q_g + 1$ it puts m into the hold-back queue

- In combination of a reliable multicast we obtain a reliable FIFO ordering multicast algorithm
Implementing Total Ordering Multicast with a Sequencer

1. Algorithm for group member p

 On initialization: $r_g := 0$;

 To TO-multicast message m to group $g
 B-multicast($g \cup \{\text{sequencer}(g)\}$, $<m, i>$);

 On B-deliver($<m, i>$) with $g = \text{group}(m)$
 Place $<m, i>$ in hold-back queue;

 On B-deliver($m_{\text{order}} = <$“order”, $i, S>$) with $g = \text{group}(m_{\text{order}})$
 wait until $<m, i>$ in hold-back queue and $S = r_g$;

 TO-deliver m; // (after deleting it from the hold-back queue)

 $r_g = S + 1$;

2. Algorithm for sequencer of g

 On initialization: $s_g := 0$;

 On B-deliver($<m, i>$) with $g = \text{group}(m)$
 B-multicast(g, $<“\text{order”}, i, s_g>$);

 $s_g := s_g + 1$;

- A sequencer is an extra process taking care about ordering
- A sender process sends message with unique ID i to sequencer
- Sequencer marks message with ordering and multicasts the message
Implementing Total Ordering Multicast using ISIS

- Used in the ISIS toolkit of Birman & Joseph

- Each participating process proposes a sequence number for a message:
 - All proposed message numbers are unique
 - The sender chooses the maximum of all proposals and sends this information (piggybacked with the next messages)
 - This agreed sequence number defines the ordering of the hold-back-queue
 - The smallest elements of the hold-back queue can be delivered as the first element

- Does not imply causal nor FIFO ordering
Implementing Causal Ordering

- Uses vector clocks to keep causal ordering (piggybacked to messages)
- Vector clock $V_g^i[i]$ counts all multicast messages of process i in group g
- Hold-back queue reflects vector clocks

Algorithm for group member p_i ($i = 1, 2 ..., N$)

On initialization

$$V_g^i[j] := 0 \ (j = 1, 2 ..., N);$$

To CO-multicast message m to group g

$$V_g^i[i] := V_g^i[i] + 1; \quad \text{B-multicast}(g, <V_g^i, m>);$$

On B-deliver(<V_g^j, m>) from p_j, with $g = \text{group}(m)$

place <V_g^j, m> in hold-back queue;

wait until $V_g^j[j] = V_g^i[j] + 1$ and $V_g^j[k] \leq V_g^i[k] \ (k \neq j);$;

CO-deliver m; // after removing it from the hold-back queue

$$V_g^i[j] := V_g^i[j] + 1;$$
4.5: Consensus

- \(n \) processes \(p_1, \ldots, p_n \)
- at most \(f \) processes have arbitrary (Byzantine) failures
- Every process starts in the undecided state and proposes a value \(v_i \)
- Eventually all correct processes \(p_i \)
 - choose the decided state
 - and choose the same value \(d_i \in \{v_1, \ldots, v_n\} \)
 - and stay in this state

at least one must have proposed the solution
Consensus Problem

- **Termination**: Eventually each correct process p_i is decided by setting variable d_i.
- **Agreement**: The decision value d_i of all correct processes is the same.
- **Integrity**: If all correct processes proposed the same value v, then $d_i = v$ for all correct p_i.

- Possible decision functions:
 majority, minimum, maximum, ...

- Byzantine failures can cause irritating and adversarial messages.

- System crashes may not be detected.
Byzantine Generals Problem

- n generals have to agree on attack or retreat
- one of them is the commander and issues the order
- at most f generals are traitors (possibly also the commander) and have adversarial behavior
- all correct generals have eventually to agree on the commander's decision if he acts correctly

Consensus Problem

- **Termination**: Eventually each correct process p_i is *decided* by setting variable d_i
- **Agreement**: The decision value d_i of all correct processes is the same
- **Integrity**: If the commander is correct then all correct processes choose the commander's proposal
Interactive Consistency

- n processes need to agree on a vector of values
- Each process proposes a value v_i
- A correct processes eventually decide on a vector $d_i = \{d_{i,1}, \ldots, d_{i,n}\}$ where
 \[
 d_{i,j} = v_j \quad \text{if } p_j \text{ is correct}
 \]

Interactive Consistency

- **Termination**: Eventually each correct process p_i is decided by setting variable d_i
- **Agreement**: The decision value d_i of all correct processes is the same
- **Integrity**: If the p_j is correct then all correct processes p_i set $d_{i,j} = v_j$
The Relationship between Consensus Problems

Assume solutions to Consensus (C), Byzantine generals (BG), interactive consistency (IC)

\[C_i(v_1, \ldots, v_n) = \text{consensus decision value of } p_i \text{ for proposals } v_i \]
\[BG_i(j, v) = \text{BG decision value of } p_i \text{ for commander } p_j \text{ proposal } v_j \]
\[IC_i(v_1, \ldots, v_n)[j] = j\text{-th position of interactive consistency decision vector of } p_i \text{ for proposals } v_i \]

Solving IC from BG

- In parallel, \(n \) Byzantine generals problems are solved
- each process \(p_j \) acts as commander once

\[IC_i(v_1, \ldots, v_n)[j] = BG_i(j, v) \]
The Relationship between Consensus Problems

Solving C from IC

- *majority* returns the most often parameter or ⊥ if no such value exists
- for all $i = 1, \ldots, n$

$$C_i(v_1, \ldots, v_n) = \text{majority}(IC_i(v_1, \ldots, v_n)[1], \ldots, IC_i(v_1, \ldots, v_n)[n])$$

Solving BG from C

- The commander p_j sends its proposed value to itself and each other process
- All processes run consensus with the values v_1, \ldots, v_n received from the commander
- for all $i = 1, \ldots, n$

$$BG_i(j, v) = C_i(v_1, \ldots, v_n)$$
Consensus in a Synchronous System

- Assume that there are no arbitrary (Byzantine) errors
- Given a synchronous distributed system (fail-stop model)
- Use basic multicast for \(f + 1 \) rounds
- Multicast all known values of all participants
- \(\text{Values}_i^r \) denotes the set of proposed variables at the beginning of round \(r \)
- Reduce communication overhead by multicasting only freshly arrived variables \(\text{Values}_i^r \) – \(\text{Values}_i^{r-1} \)
- Choose the minimum of all known values as final value
Consensus in a Synchronous System

Algorithm for process $p_i \in g$; algorithm proceeds in $f + 1$ rounds

On initialization

\[
Values_i^1 := \{v_i\}; \quad Values_i^0 = \{\};
\]

In round r ($1 \leq r \leq f + 1$)

- B-multicast(g, $Values_i^r - Values_i^{r-1}$); // Send only values that have not been sent
- $Values_i^{r+1} := Values_i^r$;
- while (in round r)
-
 On B-deliver(V_j) from some p_j

 \[
 Values_i^{r+1} := Values_i^{r+1} \cup V_j;
 \]
-

After $(f + 1)$ rounds

Assign $d_i = \text{minimum}(Values_i^{f+1})$;
Consensus in a Synchronous System

• There are no arbitrary errors only processes that crash and are correctly detected

• Given a synchronous distributed systems (fail-stop model)

• Correctness
 • Assume that two processes p_i and p_j have different values at round r
 • Then, in round $r - 1$ at least one process p_k has sent different values to p_i and p_j
 • Then, p_k has crashed in this round
 • Since the number of crashes is limited to f there are not enough crashes to cover each of the $f + 1$ rounds
Byzantine Generals Problem in a Synchronous System

- Assume that there are Byzantine errors
- Given a synchronous distributed system
 - crashes are detected
 - other wrong behavior cannot be detected, e.g., strange messages
- Messages are not (digitally) signed, i.e., $P = NP$
- At most f faulty processes

Impossibility of a solution of the Byzantine generals problem
[Shamlamport, Shostak, Pease 1982]

- The Byzantine generals problem cannot be solved for $n = 3$ and $f = 1$.
- The Byzantine generals problem cannot be solved for $n \leq 3f$.
Byzantine Generals Problem in a Synchronous System

Impossibility of a solution of the Byzantine generals problem for $n = 3$

- The Byzantine generals problem with arbitrary failures cannot be solved for $n = 3$ and $f = 1$ in a synchronous system.
 - a faulty commander sending different values to his generals
 - cannot be distinguished from a faulty general forwarding wrong values
Solution of the Byzantine Generals Problem

- Assume that there are Byzantine errors
- Given a synchronous distributed system
- Messages are not (digitally) signed
- At most f faulty processes

Solution of the Byzantine generals problem [Pease, Shostak, Lamport 1980]

- The Byzantine generals problem can be solved for $n = 4$ and $f = 1$.
- The Byzantine generals problem can be solved for $n \geq 3f + 1$.
4. Coordination and Agreement

4.5. Consensus

Solution for Four Generals and One Faulty Process

- The byzantine generals problem can be solved for \(n \geq 4 \) and \(f = 1 \).

Algorithm of Pease et al.

1. The commander sends a value to all other generals (lieutenants)
2. All lieutenants send the received value to all other lieutenants
3. The commander chooses its value; the lieutenants compute the majority of all received values

- Since \(n \geq 4 \) the majority function always can be computed if at most one process is faulty
- If the commander crashes very early then all lieutenants agree on \(\perp \)
More About the Byzantine Generals Problems

- For $f > 1$ the algorithm can be used recursively
 - Complexity: $f + 1$ rounds and $O(n^{f+1})$ messages
 - The time complexity of $f + 1$ rounds is optimal
- With the help of signed messages
 - any number of faulty generals $f < n$ can be dealt with
 - with signed messages the Byzantine Generals problem can be solved in $f + 1$ rounds with $O(n^2)$ messages [Dolev & Strong 1983]
- For asynchronous systems with crash failures
 - No algorithm can reach consensus even if only one processor is faulty [Fischer, Lynch, Paterson 1985]
 - Each algorithm that tries to reach consensus can be confronted with a faulty process which influences the result if it continues (instead of crashing)
End of Section 4