
4. Page 1

University of Freiburg, Germany
Department of Computer Science

Distributed Systems

Chapter 5 Paxos

Christian Schindelhauer

26. Mai 2013

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.1. Introduction Page 2

5.1: Introduction

Paxos was proposed by Leslie Lamport to resolve consensus

in an asynchronous distributed systems
with time failures
without byzantine failures

It is very influential and there is now a family of Paxos protocols

Literature
Funny written essay which intro-
duces Paxos as fake history

Lamport, Leslie (1998) The Part-Time
Parliament ACM Transactions on Com-
puter Systems 16 (2): 133–169

Straight-forward write up of the
same protocol by the same author
in order to prove the simplicity of
the algorithm

Lamport, Leslie (2001) Paxos Made Sim-
ple ACM SIGACT News (Distributed
Computing Column) 32, 4

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.2. Introduction Page 3

5.2: Consensus

Processes need to agree on the same value

It is not important which process wins the race

Safety Properties of Paxos

Nontriviality: The resulting value must be proposed by a process
Consistency: All learners agree only on one value
Liveness: If a learner accepts a value, then eventually all learners accept this
value

Paxos ensures these properties in the face of any (non-Byzantine) failures

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.2. Introduction Page 4

5.2: Comparing Consensi

We already discussed consensus problems

Classic Consensus Problem

Termination: Eventually each correct process pi is decided by setting
variable di

Agreement: The decision value di of all correct processes is the same
Integrity: If all correct process proposed the same value v , then di = v for
all correct pi

Safety Properties of Paxos

Nontriviality: The resulting value must be proposed by a process
Consistency: All learners agree only on one value
Liveness: If a learner accepts a value, then eventually all learners accept this
value

What is the difference?

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.2. Introduction Page 5

5.2: Comparing Consensi

What is the difference?

Termination!
Classic consensus claims that all deciders eventually agree on the same value

Paxos allows that a proposed value is not learned

Such a proposed value can be proposed later on
Perhaps it is learned then

In the original Paxos paper a continuous series of decrees is envisaged

This can lead to a race condition which is never resolved

However termination cannot be guaranteed in crash-failure systems!

No algorithm can reach (classic) consensus even if only one processor is
faulty [Fischer, Lynch, Paterson 1985]

The weakening of the assumptions in Paxos is a clever solution to this
dilemma.

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.3. The Settings Page 6

5.3: The Settings

Processes

have different speed
have independent failures
may rejoin after failure without loss or damage of their memory (new)
cooperate, i.e. do not lie or try to attack the protocol

for non-cooperating processes there is the Byzantine Paxos protocol

Communication

unicast messages
asynchronous timing model

may take arbitrarily long
message loss cannot be distinguished from message delay until the message
arrives

messages can be lost, reordered, or duplicated
but messages are not corrupted

corrupted messages can be solved by Byzantine Paxos

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.4. Counting Page 7

5.4: State Machine and Counting

The consensi are numbered uniquely

The numbering depends on the implementation
Each Proposer must increase its number
Concurrent Proposers must never use the same number
The numbering does not have to be contiguous

If a consensus fails, then this corresponds to a nop operation (no operation)

Missing numbers are counted as nop

The Paxos protocols simulates a server

which is resolving conflicting operations
and assigns numbers to each operation

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.5. Leader Election Page 8

5.5: Leader Election

is considered as an easy operation by Paxos.

It is assumed that the Proposers live long enough active to elect a Leader,
e.g. the process with the smallest ID

If more than one Proposer believes to be the Leader

then the Paxos protocol is still consistent, i.e. safety is preserved.
but it may be stalled

If no server is acting as leader, then no new commands will be proposed.

Election of a single leader is needed only to ensure progress.

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.6. Roles Page 9

5.6: Roles
Client

issues a request and waits for response
e.g.

”
write“-request on a distributed file server

Acceptor
Acceptors work in quorums, a group which is voting on requests.
They issue responses and act like the fault-tolerant memory
accept only once.

Proposer
tries to convince the acceptors that the request is o.k.
coordinates conflicts

Learner
act as replicators.
If a client request has been granted (and agreed upon) by the acceptors, the
learners take action
e.g. execute the request, send responses to the client

Leader
is a distinguished Proposer
if more than one Proposer believe that they are leaders, this conflict needs
to be resolved

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.6. Roles Page 10

Quorums and Choice

Quorum

is the majority of participating acceptors
e.g. if five Acceptors participate, then a quorum is reached, if three of the
five agree.
for even number 2n of processors n + 1 must agree to reach a quorum,
for odd number 2n − 1 of processors n must agree.

Quorum can be generalized:

A Quorum is a set S of Acceptors
Each pair of Quorums must have an non-empty intersection

Choice

If values are conflicting, then any value may be chosen
However, the value must have occurred in the most recent round
The value is chosen by the Leader by any function, e.g. majority or maximum

In some implementations processes may play more than one role, e.g.
Proposer, Acceptor and Learner

This reduces the number of messages and does not harm the correctness

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.7. Basic Paxos Page 11

Basic Paxos - First Phase

Phase 1a: Prepare

The Proposer (the Leader) selects a proposal number n and sends a prepare
message to a Quorum of Acceptors

Phase 1b: Promise
If the proposal number n is larger than any previous proposal

then each Acceptor promises not to accept proposals with a proposal number
less than n
and sends a promise message including proposal number and value

otherwise the Acceptor sends a denial
Also each Acceptor sends the value and number of its last accepted or
promised proposal to the Proposer

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.7. Basic Paxos Page 12

Basic Paxos - Second Phase

Phase 2a: Accept!
If the Proposer receives (positive) responses from a Quorum of Acceptors

it may choose a value to be agreed upon
this value must be from the values of the Acceptors that have already
accepted a value
otherwise the proposer can choose any value.

The Proposer sends an accept! message to a quorum of acceptors including
the chosen value

Phase 2b: Accepted
If the Acceptor receives an accept! message for the most recent proposal it
has promised,

it accepts the value
each Acceptor sends an accepted message to the proposer and every Learner.

otherwise it sends a denial and the last proposal number and value it has
promised to accept

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.7. Basic Paxos Page 13

Basic Paxos — without Errors

Client

Acceptors

Proposer (Leader)

prepare(n) promise(n,
{Va,Vb,Vc})

Acceptors

Accept!
(n,Vn)

Learners

Client

Time

Accepted
(n,Vn)

Response

Proposer

A
B
C

Request

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.7. Basic Paxos Page 14

Basic Paxos — Failures and no Value Accepted

Acceptors

Proposer 1

prepare(1)

Time

fails

Proposer 2 (new Leader)

prepare(2)
promise(1,{1,1})

promise(2,{2,1,1})

Acceptors

Proposer 1 
returns

fails

Accept!
(1,{1,1})

Acceptors

fails

Accept!
(1,{1,1})

deny(1)
already 

promised 2

deny(1)
already 

promised 2

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.7. Basic Paxos Page 15

Basic Paxos — Failures and the First Value Accepted

Acceptors

Proposer 1

prepare(1)

Time

fails

Proposer 2 (new Leader)

prepare(2)

promise(1,{1,1}) deny(1)
already 

promised 2

promise(2,{2})
Proposer 1 

returns

fails

Acceptors

Accepted
(1,1)

fail

Accept!
(1,{1,1})

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.7. Basic Paxos Page 16

Basic Paxos — Consistency in Time

Accepted
(1,1)

Proposer 1

prepare
(1)

fails

Proposer 2 (new Leader)

promise(1,{1,1})

promise(2,{2})

Proposer 1 returns
fails

Accept!
(1,1)

Acceptors

Proposer 2 
returns

fails

deny(1)
already 

promised 2

Acceptors

learns that 
1 is accepted

Accepted
(1,1)

prepare(2)

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.7. Basic Paxos Page 17

Basic Paxos — Termination not Guarranteed

Proposer 1

prepare(1)
fails

promise(1,{1,1,1})

Acceptors

Proposer 2

prepare(2)

fails

promise(2,{1,1,1})

Acceptors Acceptors

returns

prepare(3)
promise(3,{1,1,1})

fails

Proposer 2

prepare(4)

returns

Proposer 1

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.8. Optimizations Page 18

Multi-Paxos

Paxos can be optimized regarding Message Complexity

The first round can be skipped if the proposer stays the same.

Then, the previous 2nd round plays the role of the following 1st round.

Only the proposer is allowed to skip the 2nd round who succeeded in the
1st round.

This way, the delay reduces to two round and the number of messages
reduce to the quorum

This implementation is called Multi-Paxos

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.8. Optimizations Page 19

Multi-Paxos — Reducing the Delay and the Message
Complexity

Acceptors

Proposer (Leader)

prepare(n) promise(n,
{Va,Vb,Vc})

Acceptors

Accept!
(n,Vn)

Learners

Time

Accepted
(n,Vn)

Proposer

A
B
C

1st round
can be 
skipped
for the
same

 proposer

Accept!
(n+1,Vn+1)

Accepted
(n+1,Vn+1)

same Proposer

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.8. Optimizations Page 20

Further Optimizations

Learners

A single distinguished Learner serves as relay and informs the other Learners
when a value has been chosen
In most applications the role of the leader includes the role of the
distinguished Learner

Quorum communication

The leader may send prepare and accept only to a quorum
Other acceptors do not need to be bothered unless they are needed

Hashing the value: Instead of sending the value, it suffices to send
cryptographic secure hash values

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.9. Byzantine Paxos Page 21

Byzantine Paxos

Byzantine Paxos deals with Byzantine Failures

Here, the Client sends directly the proposal to the acceptors

The acceptors exchange all received prepare or accept! messages and
compute the Byzantine agreement

The Learners wait for receiving F + 1 identical messages

where F denotes the maximum number of Byzantine failures.

The Learners respond to the client.

Christian Schindelhauer Distributed Systems 27. Mai 2013



5. Paxos 5.9. Byzantine Paxos Page 22

End of Section 5

Christian Schindelhauer Distributed Systems 27. Mai 2013


	Paxos
	Introduction
	Consensus
	The Settings
	Counting
	Leader Election
	Roles
	Basic Paxos
	Optimizations
	Byzantine Paxos


