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What is a P2P Network?

§ What is P2P NOT?
- a peer-to-peer network is not a client-server network

§ Etymology: peer
- from latin par = equal
- one that is of equal standing with another
- P2P, Peer-to-Peer: a relationship between equal partners

§ Definition
- a Peer-to-Peer Network is a communication network between 

computers in the Internet
• without central control
• and without reliable partners

§ Observation
- the Internet can be seen as a large P2P network
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Global Internet Traffic Shares
1993-2004

Source: CacheLogic 2005
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Global Internet Traffic 2007

§ Ellacoya report 
(June 2007)
- worldwide 

HTTP traffic 
volume 
overtakes P2P 
after four years 
continues 
record 

§ Main reason: 
Youtube.com
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Internet Traffic 2010
Motivation Related Work Data Set BitTorrent Analysis Conclusion

Related Work: Internet Analysis

Cisco Visual Networking
Index Usage

contains data of 20
anonymous service providers
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HTTP 44.4 %

BitTorrent 24.1 %

NNTP 14.2 %
SHOUTcast 6.4 %

RTMP 5 %

eDonkey 4 %
RTSP 1.2 %Skype 0.8 %

HTTP 14.6 %
BitTorrent 64.3 %

NNTP 0.7 %SHOUTcast 0.7 %RTMP 0.4 %

eDonkey 16.3 %

RTSP 0.1 %
Skype 3 %

Internet Traffic of a German ISP
August 2009
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Internet Traffic of a German ISP
August 2009

7

Motivation Related Work Data Set BitTorrent Analysis Conclusion

Services

HTTP most tra�c BitTorrent most upload

Top ten services of the average user
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Milestones P2P Systems

§ Napster (1st version: 
1999-2000)

§ Gnutella (2000), Gnutella-2 
(2002)

§ Edonkey (2000)
- later: Overnet usese Kademlia

§ FreeNet (2000)
- Anonymized download

§ JXTA (2001)
- Open source P2P network 

platform

§ FastTrack (2001)
- known from KaZaa, Morpheus, 

Grokster

§ Bittorrent (2001) 
- only download, no search

§ Skype (2003)
- VoIP (voice over IP), Chat, 

Video
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Milestones Theory

§ Distributed Hash-Tables (DHT) 
(1997)
- introduced for load balancing 

between web-servers

§ CAN (2001)
- efficient distributed DHT data 

structure for P2P networks

§ Chord (2001)
- efficient distributed P2P network 

with logarithmic search time

§ Pastry/Tapestry (2001)
- efficient distributed P2P network 

using Plaxton routing

§ Kademlia (2002)
- P2P-Lookup based on XOr-Metrik

§ Many more exciting 
approaches
- Viceroy, Distance-Halving, Koorde, 

Skip-Net, P-Grid, ...

§ Recent developments
- Network Coding for P2P

- Game theory in P2P

- Anonymity, Security
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Napster

§ Shawn (Napster) Fanning
- published 1999 his beta version of the now legendary 

Napster P2P network
- File-sharing-System
- Used as mp3 distribution system
- In autumn 1999 Napster has been called download of the 

year

§ Copyright infringement lawsuit of the music industry 
in June 2000

§ End of 2000: cooperation deal
- between Fanning and Bertelsmann Ecommerce

§ Since then Napster is a commercial file-sharing 
platform
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How Did Napster Work?

§ Client-Server
§ Server stores

-  Index with meta-data
• file name, date, etc

- table of connections of 
participating clients

- table of all files of participants

§ Query
- client queries file name
- server looks up 

corresponding clients
- server replies the owner of 

the file
- querying client downloads the 

file from the file owning client
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History of Gnutella

§ Gnutella
- was released in March 2000 by Justin Frankel and Tom 

Pepper from Nullsoft
- Since 1999 Nullsoft is owned by AOL

§ File-Sharing system
- Same goal as Napster
- But without any central structures
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Gnutella — Connecting

§ Neighbor lists

- Gnutella connects directly with other 
clients

- the client software includes a list of 
usually online clients

- the clients checks these clients until 
an active node has been found

- an active client publishes its neighbor 
list

- the query (ping) is forwarded to other 
nodes

- the answer (pong) is sent back

- neighbor lists are extended and 
stored

- the number of the forwarding is 
limited (typically: five)
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Gnutella — Graph Structure

§ Graph structure
- constructed by random process
- underlies power law
- without control

Gnutella snapshot in 2000
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Figure 2.2: Log-log plots of degree versus rank (power-law 1)

node degree power-law exponent of −1.4 for the Gnutella topology. We must remark

that a group called Clip2 independently discovered this particular power-law for the

Gnutella network topology [13]. However they reported the power-law exponent of

−2.3, in disagreement with our result. We believe the reason for this discrepancy is

due to the fact that our results are based on the network crawls performed during

December of 2000, while the other result dates back to the summer of the same year.

Since that time, the Gnutella network has undergone significant changes in terms

of its structure and size, as described in [13]. While the values of the node degree

exponent O for all of the Gnutella topology instances obtained during the month of

December are consistently around −1.4, we have observed O values of −1.6 for the

data obtained in November. This may be taken as indication of a highly-dynamic,

evolving state of the Gnutella network. We are nevertheless currently attempting to

establish contact with people from Clip2 in order to further examine reasons for this

discrepancy. Interestingly, power-law degree distributions have recently been reported

for another file-sharing P2P applications, Freenet [22].
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Pastry
§ Peer-to-Peer Networks



Pastry

§ Peter Druschel 
- Rice University, Houston, Texas 
- now head of Max-Planck-Institute for Computer Science, 

Saarbrücken/Kaiserslautern
§ Antony Rowstron

- Microsoft Research, Cambridge, GB
§ Developed in Cambridge (Microsoft Research)
§ Pastry

- Scalable, decentralized object location and routing for large scale 
peer-to-peer-network 

§ PAST
- A large-scale, persistent peer-to-peer storage utility

§ Two names one P2P network
- PAST is an application for Pastry enabling the full P2P data storage 

functionality
- First, we concentrate on Pastry
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Pastry Overview

§ Each peer has a 128-bit ID: nodeID
- unique and uniformly distributed
- e.g. use cryptographic function applied to IP-address

§ Routing
- Keys are matched to {0,1}128

- According to a metric messages are distributed to the neighbor next to the target
§ Routing table has 

O(2b(log n)/b) + l  entries

- n: number of peers

- l: configuration parameter

- b: word length
• typical: b= 4 (base 16), 
l = 16

• message delivery is guaranteed as long as less than l/2 neighbored peers fail

§ Inserting a peer and finding a key needs O((log n)/b) messages

17



Routing Table

§ NodeId presented in base 2b

- e.g. NodeID: 65A0BA13
§ For each prefix p and letter x ∈ {0,..,2b-1}  

add an peer of form px* to the routing 
table of NodeID, e.g.
- b=4, 2b=16
- 15 entries for 0*,1*, .. F*
- 15 entries for 60*, 61*,... 6F*
- ...
- if no peer of the form exists, then the 

entry remains empty
§ Choose next neighbor according to a 

distance metric
- metric results from the RTT (round trip 

time)

§ In addition choose l neighors

- l/2 with next higher ID

- l/2 with next lower ID
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Routing Table

§ Example b=2
§ Routing Table

- For each prefix p and letter x ∈ {0,..,2b-1}  add an peer of 
form px* to the routing table of NodeID

§ In addition choose l neighors 

- l/2 with next higher ID

- l/2 with next lower ID

§ Observation
- The leaf-set alone can be used to find a target

§ Theorem
- With high probability there are at most O(2b (log n)/b) 

entries in each routing table
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A Peer Enters

§ New node x sends message to the node z 
with the longest common prefix p

§ x receives
- routing table of z
- leaf set of z

§ z updates leaf-set

§ x informs  l-leaf set

§ x informs peers in routing table

- with same prefix p (if l/2 < 2b)

§ Numbor of messages for adding a peer

- l messages to the leaf-set

- expected (2b - l/2) messages to nodes 
with common prefix 

- one message to z with answer

20



When the Entry-Operation Errs

§ Inheriting the next neighbor 
routing table does not allows work 
perfectly

§ Example
- If no peer with 1* exists then all 

other peers have to point to the 
new node

- Inserting 11
- 03 knows from its routing table

• 22,33
• 00,01,02

- 02 knows from the leaf-set
• 01,02,20,21

§ 11 cannot add all necessary links 
to the routing tables

21
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Missing Entries in the Routing Table

§ Assume the entry Rij is missing 
at peer D
- j-th row and i-th column of the 

routing table

§ This is noticed if a message of 
a peer with such a prefix is 
received

§ This may also happen if a peer 
leaves the network

§ Contact peers in the same row
- if they know a peer this address is 

copied

§ If this fails then perform routing 
to the missing link

22
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Lookup

§ Compute the target ID using the 
hash function

§ If the address is within the l-leaf 
set
- the message is sent directly
- or it discovers that the target is 

missing
§ Else use the address in the 

routing table to forward the 
mesage

§ If this fails take best fit from all 
addresses
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Routing — Discussion

§ If the Routing-Table is correct 
- routing needs O((log n)/b) messages

§ As long as the leaf-set is correct
- routing needs O(n/l) messages
- unrealistic worst case since even damaged routing tables 

allow dramatic speedup
§ Routing does not use the real distances

- M is used only if errors in the routing table occur
- using locality improvements are possible

§ Thus, Pastry uses heuristics for improving the lookup time
- these are applied to the last, most expensive, hops
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Experimental Results — Scalability

§ Parameter b=4, l=16, 
M=32

§ In this experiment the 
hop distance grows 
logarithmically with the 
number of nodes

§ The analysis predicts  
O(log n)

§ Fits well
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Experimental Results
Distribution of Hops
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§ Parameter b=4, l=16, 
M=32, 
n = 100,000

§ Result
- deviation from the 

expected hop distance is 
extremely small

§ Analysis predicts 
difference with 
extremely small 
probability
- fits well



Past by Druschel, Rowstron 2001
§ Distributed Storage



PAST

§ PAST: A large-scale, persistent peer-to-peer storage utility
- by Peter Druschel (Rice University, Houston – now Max-

Planck-Institut, Saarbrücken/Kaiserlautern)
- and Antony Rowstron (Microsoft Research)

§ Literature
- A. Rowstron and P. Druschel, "Storage management and 

caching in PAST, a large-scale, persistent peer-to-peer 
storage utility", 18th ACM SOSP'01, 2001.
• all pictures from this paper

- P. Druschel and A. Rowstron, "PAST: A large-scale, 
persistent peer-to-peer storage utility", HotOS VIII,  May 
2001.
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Goals of PAST

§ Peer-to-Peer based Internet Storage 
- on top of Pastry 

§ Goals
- File based storage
- High availability of data
- Persistent storage 
- Scalability
- Efficient usage of resources
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Motivation

§ Multiple, diverse nodes in the Internet can be used
- safety by different locations

§ No complicated backup
- No additional backup devices
- No mirroring
- No RAID or SAN systems with special hardware

§ Joint use of storage
- for sharing files
- for publishing documents

§ Overcome local storage and data safety limitations
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Interface of PAST

§ Create:
fileId = Insert(name, owner-
credentials, k, file)

- stores a file at a user-specified 
number k of divers nodes 
within the PAST network

- produces a 160 bit ID which 
identifies the file (via SHA-1)

§ Lookup:
file = Lookup(fileId)

- reliably retrieves a copy of the 
file identified fileId

§ Reclaim:
Reclaim(fileId, owner-credentials)

- reclaims the storage occupied 
by the k copies of the file 
identified by fileId

§ Other operations do not 
exist:
- No erase

• to avoid complex agreement 
protocols

- No write or rename
• to avoid write conflicts

- No group right management
• to avoid user, group 

managements
- No list files, file information, 

etc.

§ Such operations must be 
provided by additional layer
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Relevant Parts of Pastry

§ Leafset:
- Neighbors on the ring

§ Routing Table
- Nodes for each prefix + 1 

other letter

§ Neighborhood set
- set of nodes which have 

small TTL
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nodeId in the first n digits, but whose n + 1th digit has
one of the 2b − 1 possible values other than the n + 1th
digit in the present node’s id. Each entry in the routing
table points to one of potentially many nodes whose nodeId
have the appropriate prefix; in practice, a node is chosen
that is close to the present node, according to the proximity
metric. If no node is known with a suitable nodeId, then the
routing table entry is left empty. The uniform distribution
of nodeIds ensures an even population of the nodeId space;
thus, only "log2bN# levels are populated in the routing table.

In addition to the routing table, each node maintains IP
addresses for the nodes in its leaf set and its neighborhood
set. The leaf set is the set of nodes with the l/2 numeri-
cally closest larger nodeIds, and the l/2 nodes with numer-
ically closest smaller nodeIds, relative to the present node’s
nodeId. The neighborhood set is a set of l nodes that are
near the present node, according to the proximity metric.
It is not used in routing, but is useful during node addi-
tion/recovery. Figure 1 depicts the state of a PAST node
with the nodeId 10233102 (base 4), in a hypothetical system
that uses 16 bit nodeIds and values of b = 2 and l = 8.

NodeId 10233102

-0-2212102 1 -2-2301203 -3-1203203

0 1-1-301233 1-2-230203 1-3-021022

Routing table

10-0-31203 10-1-32102 2 10-3-23302

102-0-0230 102-1-1302 102-2-2302 3

1023-0-322 1023-1-000 1023-2-121 3

10233-0-01 1 10233-2-32

0 102331-2-0

2

Neighborhood set
13021022 10200230 11301233 31301233

02212102 22301203 31203203 33213321

Leaf set
10233033 10233021 10233120 10233122

10233001 10233000 10233230 10233232

LARGERSMALLER

Figure 1: State of a hypothetical Pastry node with
nodeId 10233102, b = 2, and l = 8. All numbers
are in base 4. The top row of the routing table
represents level zero. The shaded cell at each level
of the routing table shows the corresponding digit
of the present node’s nodeId. The nodeIds in each
entry have been split to show the common prefix with
10233102 - next digit - rest of nodeId. The associated IP
addresses are not shown.

In each routing step, a node normally forwards the mes-
sage to a node whose nodeId shares with the fileId a prefix
that is at least one digit (or b bits) longer than the prefix
that the fileId shares with the present node’s id. If no such
node is known, the message is forwarded to a node whose
nodeId shares a prefix with the fileId as long as the current
node, but is numerically closer to the fileId than the present
node’s id. Such a node must be in the leaf set unless the
message has already arrived at the node with numerically
closest nodeId. And, unless $l/2% adjacent nodes in the leaf
set have failed simultaneously, at least one of those nodes
must be live.
Locality Next, we briefly discuss Pastry’s properties with

respect to the network proximity metric. Recall that the
entries in the node routing tables are chosen to refer to a
nearby node, in terms of the proximity metric, with the ap-
propriate nodeId prefix. As a result, in each step a message
is routed to a “nearby” node with a longer prefix match
(by one digit). This local heuristic obviously cannot achieve
globally shortest routes, but simulations have shown that
the average distance traveled by a message, in terms of the
proximity metric, is only 50% higher than the corresponding
“distance” of the source and destination in the underlying
network [27].

Moreover, since Pastry repeatedly takes a locally “short”
routing step towards a node that shares a longer prefix with
the fileId, messages have a tendency to first reach a node,
among the k nodes that store the requested file, that is near
the client, according to the proximity metric. One exper-
iment shows that among 5 replicated copies of a file, Pas-
try is able to find the “nearest” copy in 76% of all lookups
and it finds one of the two “nearest” copies in 92% of all
lookups [27].
Node addition and failure A key design issue in Pastry is
how to efficiently and dynamically maintain the node state,
i.e., the routing table, leaf set and neighborhood sets, in
the presence of node failures, node recoveries, and new node
arrivals. The protocol is described and evaluated in full
detail in [27].

Briefly, an arriving node with the newly chosen nodeId
X can initialize its state by contacting a “nearby” node A
(according to the proximity metric) and asking A to route
a special message with the destination set to X. This mes-
sage is routed to the existing node Z with nodeId numer-
ically closest to X2. X then obtains the leaf set from Z,
the neighborhood set from A, and the ith row of the routing
table from the ith node encountered along the route from
A to Z. One can show that using this information, X can
correctly initialize its state and notify all nodes that need to
know of its arrival, thereby restoring all of Pastry’s invari-
ants.

To handle node failures, neighboring nodes in the nodeId
space (which are aware of each other by virtue of being in
each other’s leaf set) periodically exchange keep-alive mes-
sages. If a node is unresponsive for a period T , it is presumed
failed. All members of the failed node’s leaf set are then no-
tified and they update their leaf sets to restore the invariant.
Since the leaf sets of nodes with adjacent nodeIds overlap,
this update is trivial. A recovering node contacts the nodes
in its last known leaf set, obtains their current leafs sets,
updates its own leaf set and then notifies the members of
its new leaf set of its presence. Routing table entries that
refer to failed nodes are repaired lazily; the details are not
relevant to the subject of this paper [27].

Pastry, as described so far, is deterministic and thus vul-
nerable to malicious or failed nodes along the route that ac-
cept messages but do not correctly forward them. Repeated
queries could thus fail each time, since they are likely to take
the same route. To overcome this problem, the routing is ac-
tually randomized. To avoid routing loops, a message must
always be forwarded to a node that shares at least as long a
prefix with, but is numerically closer to the destination node
in the namespace than the current node. The choice among
multiple such nodes is random. In practice, the probabil-

2In the exceedingly unlikely event that X and Z are equal,
the new node must obtain a new nodeId.



Interfaces of Pastry

§ route(M, X): 
- route message M to node with nodeId numerically closest 

to X

§ deliver(M): 
- deliver message M to application

§ forwarding(M, X): 
- message M is being forwarded towards key X

§ newLeaf(L): 
- report change in leaf set L to application 
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Insert Request Operation

§ Compute fileId by hashing
- file name
- public key of client
- some random numbers, called 

salt
§ Storage (k x filesize)

- is debited against client‘s quota
§ File certificate

- is produced and signed with 
owner‘s private key

- contains fileID, SHA-1 hash of 
file‘s content, replciation factor k, 
the random salt, creation date, 
etc. 

§ File and certificate are routed via 
Pastry
- to node responsible for fileID

§ When it arrives in one node of the k 
nodes close to the fileId
- the node checks the validityof the 

file
- it is duplicated to all other k-1 

nodes numerically close to fileId
§ When all k nodes have accepted a 

copy
- Each nodes sends store receipt 

is send to the owner
§ If something goes wrong an error 

message is sent back
- and nothing stored
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Lookup

§ Client sends message with requested fileId into 
the Pastry network

§ The first node storing the file answers
- no further routing

§ The node sends back the file
§ Locality property of Pastry helps to send a close-

by copy of a file
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Reclaim

§ Client‘s nodes sends reclaim certificate
- allowing the storing nodes to check that the claim is 

authentificated

§ Each node sends a reclaim receipt
§ The client sends this recept to the retrieve the 

storage from the quota management

36



Security

§ Smartcard
- for PAST users which want to store files
- generates and verifies all certificates
- maintain the storage quotas
- ensure the integrity of nodeID and fileID assignment

§ Users/nodes without smartcard
- can read and serve as storage servers

§ Randomized routing
- prevents intersection of messages

§ Malicious nodes only have local influence
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Storage Management

§ Goals
- Utilization of all storage 
- Storage balancing
- Providing k file replicas

§ Methods
- Replica diversion

• exception to storing replicas nodes in the leafset
- File diversion

• if the local nodes are full all replicas are stored at different 
locations
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Summary

§ PAST provides a distributed storage system
- which allows full storage usage and locality features

§ Storage management
- based ond Smartcard system 

• provides a hardware restriction
- utilization moderately increases failure rates and time 

behavior
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