
SS 2013 1. Introduction 1.

Chapter 1: Introduction
Why transactional?
Transactions form a reasonable abstraction concept for many classes
of real-life data processing problems.

I Transactions cope in a very elegant way with the subtle and often difficult
issues of keeping data consistent in the presence of highly concurrent data
accesses and despite all sorts of failures.

I This is achieved in a generic way invisible to the application logic so that
application developers are freed from the burden of dealing with such
system issues.

I The application program simply has to indicate the boundaries of a
transaction by issuing BEGIN TRANSACTION and COMMIT TRANSACTION calls.

I The execution environment considers all requests receiving from the
application programs execution within this dynamic scope as belonging to
the same transaction.

I For the transaction’s requests and effects on the underlying data certain
properties are guaranteed: ACID properties.

Dr.-Ing. Thomas Hornung SS 2013 Seite 1

SS 2013 1. Introduction 1.

Challenges inherent to the transaction concept demonstrated by some examples

(Expl.1a) Debit/credit
Consider a debit/credit-program of a bank which transfers a certain amount of money between
two accounts. Executing the program will give us the following transaction T:

BEGIN
% Withdraw
READ current value VA of account A from disk into T’s local main memory;
decrement VA by amount X;
WRITE new value VA’ = VA - X of account A from T’s local main memory onto disk;
% Deposit
READ current value VB of account B from disk into T’s local main memory;
increment VB by amount X;
WRITE new value VB’ = VB + X of account B from T’s local main memory onto disk;
COMMIT;

I Assume when executing T the system runs into a failure, e.g. after writing A and before
reading B. A customer of the bank has lost X money!

I Assume debit/credit-transaction T1 is running concurrently to a transaction T2, which
computes the balance of the accounts A and B. Then the READ and WRITE accesses of
both transactions may be interleaved. Assume that T2 is executed after T1 writing A and
before T1 writing B, then the balance computed will be incorrect.

Dr.-Ing. Thomas Hornung SS 2013 Seite 2

SS 2013 1. Introduction 1.

(Expl.1b) Distributed debit/credit
Assume that different branches of the bank are involved, where each branch maintains its own
server. Assume further, at Branch1 a debit/credit-transaction is started and at Branch2 a
balancing transaction, where both involve the same accounts. Transactions shall have access
to accounts on remote server via remote procedure calls (RPC), a synchronous communication
mechanism transparent to the programmer. We assume procedures
withdraw(account, amount), deposit(account, amount) and getBalance(account).

A possible interleaving when both transactions are running in parallel.

Branch1(accountA) Branch2(accountB)

T1 : withdraw(A,10)
T1 : call(deposit(B,10))

T2 : getBalance(B)
T2 : call(getBalance(A))
T1 : deposit(B,10)

T2 : getBalance(A)
T2 : display A+B

y
time

An incorrect balance will be displayed!

Dr.-Ing. Thomas Hornung SS 2013 Seite 3

SS 2013 1. Introduction 1.

(Expl.1c) Distributed debit/credit
Assume that different branches of the bank are involved, where each branch maintains it own
servers. Assume further, at Branch1 a debit/credit-transaction is started and at Branch2 a
balancing transaction is started, where both involve the same accounts. Finally assume, that
each transaction implements exclusive access to both accounts during execution.
Communication is explicitly implemented by exchanging messages between the involved
servers.

A possible interleaving when both transactions are running in parallel.

Branch1 Branch2

T1 : {{lock(A); withdraw(A,10)} ||
{send {lock(B); deposit(B,10)} to
Branch2}}

T2 : {{lock(B); getBalance(B)} ||
{send {lock(A); getBalance(A)} to
Branch1}}

T1 : {wait for ACK of deposit at
Branch2}

T2 : {wait until lock(A) granted}
T2 : {wait for balance of A}
T1 : {wait until lock(B) granted}

y
time

A deadlock has occured which is difficult to detect!

Dr.-Ing. Thomas Hornung SS 2013 Seite 4

SS 2013 1. Introduction 1.

(Expl.2) Electronic commerce
Consider the following purchasing activity, which covers several different servers located at
different sites:

I A client connects to a bookstore’s server and starts browsing and querying the catalog.
I The client gradually fills a shopping card with items intended to purchase.
I When the client is about to check out she makes final decisions what to purchase.
I The client provides all necessary information for placing a legally binding order, e.g.

shipping address and credit card.
I The merchants’s server forwards the payment information to the customer’s bank or to a

clearinghouse. When the payment is accepted, the inventory is updated, shipping is
initiated and the client is notified about successful completion of her order.

I The final step of the purchasing is the most critical one. Several servers maintained by
different institutions are involved.

I Most importantly it has to be guaranteed, that either all the tasks of the final step are
processed correctly, or the whole purchasing activity is undone.

Dr.-Ing. Thomas Hornung SS 2013 Seite 5

SS 2013 1. Introduction 1.

(Expl.3) Mobile computing
Assume that the described purchasing activity is performed via a smartphone. Then the
described picture is even more complicated.

I The smartphone might be temporarily disconnected from the mobile net. Thus it is not
guaranteed, that the state of the catalog as seen by the client reflects the state of the
catalog at the server.

I If the client enters a dead spot during processing of the final step of the purchasing
activity, confusion may arise, e.g. the purchasing is started again resulting in double
orders.

Dr.-Ing. Thomas Hornung SS 2013 Seite 6

SS 2013 1. Introduction 1.

Transaction Concept

ACID properties

A tomicity: A transaction is executed completely or not at all.
C onsistency: Consistency constraints defined on the data are preserved.
I solation: Each transaction behaves as if it were operating alone on the data.

D urability: All effects will survive all software and hardware failures.

=⇒ Concurrency Control (I) and Recovery (A, D) provide the mechanisms
needed to cope with the problems demonstrated by Expl.1-3.

Dr.-Ing. Thomas Hornung SS 2013 Seite 7

SS 2013 1. Introduction 1.

Concurrency Control Refresh

Basics
I Set of transactions T = {T1, . . . , Tn}.
I A transaction is given as a sequence of read (R) - and write (W)-actions over

database objects {A, B, C , . . .}, e.g.
T1 = R1A W1A R1B W1B
T2 = R2A W2A R2B W2B
T3 = R3A W3B

I Let WX be the j-th action of transaction T and assume that RA1, . . . , RAn are
the read actions of T being processed in the indicated order before WX . Then
the value of X written by T is given by fT ,j(a1, . . . , an), where fT ,j is an arbitrary,
however unknown function and the a’s are the values read in the indicated order
by the preceding read actions.

I A concurrent execution of a set of transactions is called schedule and is given as
a - possibly interleaved - sequence of the respective actions, e.g.

S1 = R1A W1A R3A R1B W1B R2A W2A W3B R2B W2B
S2 = R1A W1A R3A R1B W1B R2A W2A W3B R2B W2B
S3 = R3A R1A W1A R1B W1B R2A W2A R2B W2B W3B

I A schedule is called serial, if it is not interleaved.
Dr.-Ing. Thomas Hornung SS 2013 Seite 8

SS 2013 1. Introduction 1.

Correctness

I A schedule is called (conflict-)serializable,1 if there exists a (conflict-)equivalent
serial schedule over the same set of transactions.

I For a given schedule S over a set of transactions, the conflict graph G(S) is given
as G(S) = (V , E), where the node set V is the set of transactions in S and the
set of edges E is given by so called conflicts as follows:

I S = . . . WiA . . . RjA . . . ⇒ Ti → Tj ∈ E , if there is no other write-action
to A between WiA und RjA in S.

I S = . . . WiA . . . WjA . . . ⇒ Ti → Tj ∈ E , if there is no other write-action
to A between WiA und WjA in S.

I S = . . . RiA . . . WjA . . . ⇒ Ti → Tj ∈ E , if there is no other write-action
to A between RiA und WjA in S.

I A schedule is serializable, iff its conflict graph is acyclic.

1We consider only conflict-serializability and therefore talk about serializability in the
sequel, for short.

Dr.-Ing. Thomas Hornung SS 2013 Seite 9

SS 2013 1. Introduction 1.

Example
Schedule S1: R1A W1A R3A R1B W1B R2A W2A W3B R2B W2B
Schedule S2: R3A R1A W1A R1B W1B R2A W2A R2B W2B W3B

S1 is serializable, S2 is not.

To exclude not serializable schedules, a so called transaction manager enforces certain
transaction behaviour.

Dr.-Ing. Thomas Hornung SS 2013 Seite 10

SS 2013 1. Introduction 1.

2-Phase Locking (2PL)

I Serializable schedules are guaranteed, if all transactions obey the 2PL-protocol:
I For each transaction T , each RA and WA has to be surrounded by a lock/unlock

pair LA, UA:

T = . . . R/WA . . . =⇒ T = . . . LA . . . R/WA . . . UA . . .

I For each A read or written in T there exists at most one pair LA and UA.
I For each T and any LA1, UA2 there holds: T = . . . LA1 . . . UA2

=⇒ No more locking after the first unlock!
I In any schedule S, the same object A cannot be locked at the same time by more

than one transaction:

S = . . . Li A . . . Lj A . . . =⇒ S = . . . Li A . . . Ui A . . . Lj A . . .

I Every schedule according to 2PL is serializable, however
I Not every serializable schedule can be produced by 2PL.
I Deadlocks may occur.

Dr.-Ing. Thomas Hornung SS 2013 Seite 11

SS 2013 1. Introduction 1.

Example 1

T1 = L1A R1A L1B U1A W1B U1B,
T2 = L2A R2A W2A U2A,
T3 = L3C R3C U3C .

S = L1A R1A L1B U1A L2A R2A L3C R3C U3C W1B U1B W2A U2A

Example 2

T1 = L1A R1A L1B U1A W1B U1B,
T2 = L2A R2A W2A U2A,
T3 = L3C R3C U3C .

S = L1A R1A L1B U1A L2A R2A L3C R3C U3C W1B U1B W2A U2A
The lock point of a transaction using 2PL is given by the first unlock of the
transaction.

Dr.-Ing. Thomas Hornung SS 2013 Seite 12

SS 2013 1. Introduction 1.

2PL guarantees serializability of schedules.
Let S be a schedule of a set of 2PL-transactions T = {T1, . . . , Tn}.

Assume, S is not serializable, i.e. the conflict graph G(S) is cyclic, where w.l.o.g.
T1 → T2 → · · · → Tk → T1.

I Each edge T → T ′ implies T and T ′ having conflicting actions, where the action of T
preceds the one of T ′.

I Because of surrounding actions by lock/unlock and the 2PL-rule, T ′ can execute its
action only after the lock-point of T . This implies the following structure of S, where
A1, . . . , Ak are data items:

S = . . . U1A1 . . . L2A1 . . . ,
...
S = . . . Uk−1Ak−1 . . . LkAk−1 . . . ,
S = . . . UkAk . . . L1Ak

I Let l1, . . . , lk be the lock points of the involved transactions. Then we have l1 before l2,
. . . , lk−1 before lk and lk before l1. However this is a contradiction to the structure of a
schedule. Therefore S is serializable.

Dr.-Ing. Thomas Hornung SS 2013 Seite 13

SS 2013 1. Introduction 1.

Recovery Refresh

Basics

I Reliability has to be achieved even though system components are unreliable, in
general.

I Log files are a prerequisite for recovery from system failures.
I Log files are maintained as follows:

I When a transaction T starts executing, (T , Begin) is written into the log.
I For each WA of a transaction T , (T , A, Aold , Anew) is written into the log,

where Anew is the new value (After-image) and Aold the previous value
(before-image) of A.

I When a transaction commits its execution, (T , Commit) is written into the
log and otherwise (T , Abort).

I The write-ahead-log-rule (WAL) has to be observed: writing into the log must
preceed writing into the database.

Dr.-Ing. Thomas Hornung SS 2013 Seite 14

SS 2013 1. Introduction 1.

Consequence of atomicity

I Whenever a transaction has processed a commit action, all its effects are
permanent and will survive all failures.

I Whenever a transaction has processed a abort action - respectively is aborted -,
all its effects are removed.

Recovery from system failures: Backwards Restart-Algorithm, logging has to be done
on page-level

I Redone := ∅; Undone := ∅.
I The log is processed backwards. Let (T , A, Aold , Anew) the next log-entry to be

considered. If A 6∈ Redone ∪ Undone:
Redo: If (T , Commit) has already been found, then process WA with

value Anew and perform Redone := Redone ∪ {A}.
Undo: Otherwise perform WA with value Aold and perform

Undone := Undone ∪ {A}.

Dr.-Ing. Thomas Hornung SS 2013 Seite 15

SS 2013 1. Introduction 1.

Example
System- State
failure after Restart

T1 LA RA WA CO UA

T2 LB RB LA RA WB CO UA,B

T3 LC RC WC

WA not yet materialized
in the database, e.g. read accesses RA

are expected

DB :
A0 f1(A0)
B0 f2(f1(A0), B0) f2(f1(A0), B0)
C0 f3(C0) C0

localmemory/
systembuffer :
T1 f1(A0)
T2 f2(f1(A0), B0)
T3 f3(C0)

Log (reduced):
(T1, A, A0, f1(A0)), (T1, CO), (T2, B, B0, f2(f1(A0), B0)), (T2, CO), (T3, C, C0, f3(C0))

Dr.-Ing. Thomas Hornung SS 2013 Seite 16

