
SS 2013 3. Transaction Model 3.

3: Transaction Model

Page Model

I All operations on data will be eventually mapped into read and write operations
on pages.

I To study the concurrent execution of transactions it is sufficient to inspect the
interleavings of the resulting page operations.

I Independently whether a page resides in cache memory or resides on disk, read
and write are considered as indivisible.

Dr.-Ing. Thomas Hornung SS 2013 Seite 1



SS 2013 3. Transaction Model 3.

Parallelism as prerequisite for distributed execution

A transaction T is a partial order <1 of actions in OP, T = (OP, <), where OP is a
finite set of T ’s actions RX and WX , where X is a data item.

Moreover, < ⊆ OP × OP is a partial order on OP which fulfills the following
properties:

I Each data item is read and written by T at most once.

I If p is a read action and q is a write actions of T and both access the same data item,
then p < q.

Complete transaction

We call a transaction complete, if its first action is begin b and its last action either is
commit c or abort a.

1A binary relation is a partial order , if it is reflexive, antisymmetric and transitive.

Dr.-Ing. Thomas Hornung SS 2013 Seite 2



SS 2013 3. Transaction Model 3.

A parallel debit/credit transaction. b: BEGIN; c: COMMIT.

When transactions are depicted as directed graphs, we omit transitive edges.

Two parallel debit/credit transactions, each prepared for parallel execution.

=⇒ Definition of a schedule? Definition of serializability?

Dr.-Ing. Thomas Hornung SS 2013 Seite 3



SS 2013 3. Transaction Model 3.

Two parallel debit/credit transactions, each prepared for parallel execution.

Transaction T1 Transaction T2

Locally observable schedules of the two transactions when executed in parallel by CPU PA and
CPU PB.

(i)
PA : R1A W1A R2A W2A
PB : R1B W1B R2B W2B

(ii)
PA : R1A W1A R2A W2A
PB : R2B W2B R1B W1B

On each CPU in both cases the local schedules are serializable - however, globally, in the
second case the transactions are not executed in a serializable manner!

Dr.-Ing. Thomas Hornung SS 2013 Seite 4



SS 2013 3. Transaction Model 3.

Histories and schedules

Let T = {T1, . . . ,Tn} be a (finite) set of complete transactions, where for each Ti we
have Ti = (OPi , <i ).

A history of T is a pair S = (OPS , <S), where

I OPS = ∪n
i=1OPi and <S a partial order on OPS such that <S⊇ ∪n

i=1 <i .

I Let p, q ∈ OPS , where p and q belong to distinct transactions, however access
the same data object. If p or q is a write action, then either p <S q or q <S p;
we say, p and q are in conflict; if p <S q and p and q are in conflict, we write
(p, q) ∈ conf (S).

A schedule of T is a prefix of a history.2

Conflict graph

The conflict graph of a schedule S is given as G(S) = (V ,E), where V is the set of
transactions in S and the set of edges E is given by the conflicts in S : Ti → Tj ∈ E , iff
there are conflicting actions p ∈ OPi , q ∈ OPj and p <S q.

2A partial order L′ = (A′, <′) is a prefix of a partial order L = (A, <), if A′ ⊆ A, <′⊆<,
for all a, b ∈ A′: a <′ b if a < b, and for all p ∈ A, q ∈ A′: p < q ⇒ p <′ q.

Dr.-Ing. Thomas Hornung SS 2013 Seite 5



SS 2013 3. Transaction Model 3.

A schedule/history of the two parallel debit/credit transactions.

The schedule is not serializable
as its conflict graph is cyclic.

Serializability

I A schedule S = (OPS , <S ) is serial, if for any two transactions T1,T2 appearing in S ,
<S orders all actions of T1 before all actions of T2, or vice versa.

I A schedule is called (conflict-)serializable,3 if there exists a (conflict-)equivalent serial
schedule over the same set of transactions.

I A schedule S = (OPS , <S ) is serializable, iff its conflict graph is acyclic.

3We consider only conflict-serializability and therefore talk about serializability in the
sequel, for short.

Dr.-Ing. Thomas Hornung SS 2013 Seite 6


