
SS 2013 7. Petri-Nets 7.

Chapter 7: Modeling and Analysis of Distributed
Applications

Petri-Nets

I Petri-nets are abstract formal models capturing the flow of information and
objects in a way which makes it possible to describe distributed systems and
processes at different levels of abstraction in a unified language.

I Petri-nets have the name from their inventor Carl Adam Petri, who introduced
this formalism in his PhD-thesis 1962.
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Complaints processing: formal Petri-net orchestration.1

1
van der Aalst: The Application of Petri nets to Workflow Management. Journal of Circuits, Systems, and Computers 8(1): 21-66 (1998)
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Complaints processing: more than one complaint
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Complaints processing: how to distinguish complaints
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Complaints processing: keeping things together
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Petri-nets

Petri-nets model system dynamics.

I Activities trigger state transitions,

I activities impose control structures,

I applicable for modelling discrete systems.

Benefits

I Uniform language,

I can be used to model sequential, causual independent (concurrent, parallel,
nondeterministic) and monitored exclusive activities.

I open for formal analysis, verification and simulation,

I graphical intuitive representation.

The name Petri-net denotes a variety of different versions of nets - we will discuss the
special case of System Nets following the naming introduced by W. Reisig.
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Section 7.1 Elementary System Nets

Basic elements of an elementary System Net (eS-Net)

I System states are represented by places, graphically circles or ovals.

I A place may be marked by an arbitrary number of tokens graphically represented
by black dots.

I System dynamics is represented by transitions, graphically rectangles.

I Transitions represent activities (events) and the causalities between such
activities (events) are represented by edges.

I Multiplicities represent the consumption, respectively creation of resources which
are caused by the occurence of activities.
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3-Philosopher-Problem

bj : philosopher starts eating; ej : philosopher stops eating;
ij : philosopher is eating; gj : fork on the desk;
1 ≤ j ≤ 3.
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A transition may occur when certain conditions with respect to the markings of its
directly connected places are fulfilled; the occurence of a transition - also called its
firing - effects the markings of its directly connected edges, i.e. has local effects.

The surrounding of a transition t is given by t and all its directly connected places:

sk

s1
sk+1

snsk

s1
sk+1

sn

s1, . . . , sk are called preconditions (pre-places), sk+1, . . . , sn postconditions
(post-places).

A place which is pre- and post-place at the same time is called a loop.
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A net is given as a tripel N = (P,T ,F ), where

I P, the set of places, and T , the set of transitionen, are non-empty disjoint sets,

I F ⊆ (P ×T )∪ (T × P), is the set of directed edges, called flow relation, which is
a binary relation such that dom(F ) ∪ cod(F ) = P ∪ T .

Let N = (P,T ,F ) be a net and x ∈ P ∪ T .

xF := {y | (x , y) ∈ F}
Fx := {y | (y , x) ∈ F}

For p ∈ P, pF is the set of post-transitions of p; Fp is the set of pre-transitions of p.
For t ∈ T , tF is the set of post-places of t; Ft is the set of pre-places of t.
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Let N = (P,T ,F ) be a net. Any mapping m from P into the set of natural numbers
NAT is called a marking of P.

A mapping P → NAT ∪ {ω} is called ω-marking. ω represents an infinitly large
number of tokens.

Arithmetic of ω:

ω − n = ω, ω + n = ω, n · ω = ω, 0 · ω = 0, ω > n

where n ∈ NAT , n > 0.

A marking represents a possible system state.
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A eS-Net is given as N = (P,T ,F ,V ,m0), where

I (P,T ,F ) a net,

I V : F → NAT+ a multiplicity,

I m0 a marking called initial marking.

N is called ordinary eS-Net, whenever V (f ) = 1, ∀f ∈ F .
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A transition may fire once it is enabled.

Let N = (P,T ,F ,V ,m0) a eS-Net, m a marking and t ∈ T a transition.

I t is enabled at m, if for all pre-places p ∈ Ft there holds:

m(p) ≥ V (p, t).

I Whenever t is enabled at m, then t may fire at m. Firing t at m transforms m to
m′, m[ t�m′, in the following way:

m′(p) :=





m(p)− V (p, t) + V (t, p) falls p ∈ Ft, p ∈ tF ,
m(p)− V (p, t) falls p ∈ Ft, p 6∈ tF ,
m(p) + V (t, p) falls p 6∈ Ft, p ∈ tF ,
m(p) sonst.
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Transitions and markings in terms of vectors

Let places in P be linearily ordered.

I Markings of a net can be considered as vectors of nonnegative integers of
dimension | P |, called place-vectors.

I Transitions t can be characterized as vectors of nonnegative integers of dimension
| P |, called transition vectors ∆t, t+, t−:

Let N = (P,T ,F ,V ,m0) a eS-Net, p ∈ P and t ∈ T .

t+(p) :=

{
V (t, p) if p ∈ tF ,
0 sonst.

t−(p) :=

{
V (p, t) if p ∈ Ft,
0 sonst.

∆t(p) := t+(p)− t−(p).
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Place and transition vectors at work:

I m ≤ m′, if m(p) ≤ m′(p) for ∀p ∈ P,

I m < m′, if m ≤ m′, however m 6= m′.

I t is enabled at m iff t− ≤ m,

I m[ t�m′ iff t− ≤ m and m′ = m + ∆t.
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Reachability

Let N = (P,T ,F ,V ,m0) a eS-Net.

We denote W (T ) the set of words with finite length over T ; ε ∈W (T ) is called the
empty word.

The length of a word w ∈W (T ) is given by l(w). We have l(ε) = 0.

Let m,m′ be markings of P and w ∈W (T ). We define a relation m[w�m′
inductively:

I m[ ε�m′ iff m = m′,

I Let t ∈ T ,w ∈W (T ). m[wt�m′ iff ∃m′′ : m[w�m′′, m′′[ t�m′.

The reachability relation [ ∗�of N is defined by

m[ ∗�m′ iff ∃w : w ∈W (T ),m[w�m′;

m′ is reachable from m in N.
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I RN(m) := {m′ | m[ ∗�m′}, the set of markings reachable from m by N,

I LN(m) := {w | ∃m′ : m[w�m′}, the set of all words representing firing sequences
of transitions of N starting at m,

I ∆w :=
∑n

i=1 ∆ti , where w = t1t2 . . . tn.

Results

I [ ∗�is reflexive and transitive.

I m[w�m′ ⇒ (m + m∗)[w�(m′ + m∗),∀m∗ ∈ NAT |P|. (Monotony)

I m[w�m′ ⇒ m′ = m + ∆w .
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Reachability graph

Let N = (P,T ,F ,V ,m0) a eS-Net. The Reachability graph of N is a directed graph
EG(N) := (RN(m0),BN); RN(m0) is the set of nodes and BN is the set of annotated
edges as follows:

BN = {(m, t,m′) | m,m′ ∈ RN(m0), t ∈ T ,m[ t�m′}.
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Exercise: Give the reachability graph of the following eS-Net:

t1s1 t3

t2

s4

s3

s2

t1s1 t3

t2

s4

s3

s2

RN(m0) = { (1, 0, 0, 0), (1, 1, 0, 0), (1, 2, 0, 0), (1, 3, 0, 0), . . . ,
(0, 0, 1, 0), (0, 1, 1, 0), (0, 2, 1, 0), (0, 3, 1, 0), . . . ,
(0, 0, 1, 1), (0, 1, 1, 1), (0, 0, 1, 2), (0, 2, 1, 1), (0, 1, 1, 2), (0, 0, 1, 3), . . .}

LN(m0) = { ε, t1, t1t1, t1t1t1, . . . ,
t2, t1t2, t1t1t2, t1t1t1t2, . . . ,
t1t2t3, t1t1t2t3, t1t1t2t3t3, t1t1t1t2t3, t1t1t1t2t3t3, t1t1t1t2t3t3t3, . . .}
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Section 7.2 Control Patterns

I eS-nets can be used to model causal dependencies; for modelling temporal
aspects extensions of the formalism are required.

I Whenever between some transitions there are no causal dependencies, the
transitions are called concurrent; concurrency is a prerequisite for parallelism.
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Some typical causalities

Sequence

Iteration
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AND-join, OR-join, AND-split, OR-split
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OR-Split with regulation
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OR-Join with regulation
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A eS-Net with concurrency

t3

t1 t4

t2

p4p2

p1 p3

p5

Par EndPar Begin

t3

t1 t4

t2

p4p2

p1 p3

p5

Par EndPar Begin
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Section 7.3 Analysis

Boundedness

Let N = (P,T ,F ,V ,m0) be a eS-Net, m a marking, p ∈ P.

I Let k ∈ NAT+. p is called k-bounded, if for each marking m′ there holds:

m′ ∈ RN(m0)⇒ m′(p) ≤ k.

I p is called bounded, if p k-bounded for some k ∈ NAT+.

I N is called bounded (k-bounded), if each place is bounded (k-bounded).

I A eS-net is called safe, if it is 1-bounded. Places of a bounded net may be
interpreted as boolean conditions.
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Theorem

Let N = (P,T ,F ,V ,m0) be a eS-Net. N is unbounded, i.e. not bounded, iff there
exist w ∈W (T ), m,m′ ∈ RN(m0), such that m[w�m′ and m′ > m.

Proof ⇐
Let w ∈W (T ), m,m′ ∈ RN(m0), such that m[w�m′ and m′ > m. It holds

m[w�m′[w�m′′[w�m′′′ . . . ,

where m < m′ < m′′ < m′′′ < . . ..

Thus there must exist at least one unbounded place.
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To proof ⇒ we first proof:

Lemma

For each infinite sequence of markings (mi ) of markings there exists an infinite
subsequence (m′j ), which is weakly monotonic, i.e. l < k implies m′l ≤ m′k .

To prove the Lemma, first extract an infinite subsequence for which weak monotonicity holds

for the first components of its markings. Then extract from that subsequence an infinite

subsequence for which weak monotonicity holds for the second components of its markings,

etc.
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Proof ⇒
I Consider the reachability graph EG(N), which has an infinite number of nodes. Starting

from m0 there exist a directed path to each node of the graph. Because of the finite
number of transitions, each node has only a finite number of direct successors.

I Thus, at m0 there start an infinite number of paths without cycles, however only a finite
number of edges. Therefore, one of these edges must be part of infinitly many paths. Let
m0 → m1 be one such edge.

I The same argument can be applied w.r.t. m1 such that we get m0 → m1 → m2, where
m1 → m2 is part of an infinite number of paths.

I The above construction can be repeated infinitly many times. Therefore there exists an
infinite sequence of markings (mi ) of pairwise distinct markings, such that mk , ml ,
0 ≤ k ≤ l implies:

m0[ ∗�mk [ ∗�ml .

because of the Lemma there exists an infinite weakly monotonic subsequence (m′j ) von

(mi ). Let m′1,m
′
2 two successive elements. From construction we have m0[ ∗�m′1[ ∗�m′2,

m′1 ≤ m′2 and even m′1 < m′2.
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Reachability

Let N = (P,T ,F ,V ,m0) be a eS-Net, m ∈ NAT |P| a marking. The decision problem:

m ∈ RN(m0)?

is called reachability-problem.

The reachability problem is decidable, however even for bounded nets hyperexponential.
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Coverability

Let N = (P,T ,F ,V ,m0) be a eS-Net and let m,m′ be markings of N.

I If m ≤ m′, then m′ covers m, respectively, m is covered by m′.

I m is called coverable in N, if there exists a reachable marking m′ which covers m.

Consequence: Whenever a marking is not coverable w.r.t. some eS-Net N, it is not
reachable in N.

Give examples.
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Coverability Graph

Let N = (P,T ,F ,V ,m0) a eS-Net. The Coverability Graph of N is given by
CG(N) := (R,B) as follows:

I inductive definition of an auxiliary tree T (N):

The values of the nodes in T (N) are ω-markings of N. The value of the root
node r is m0. Let m be the value of some node n of T (N), t ∈ T , and m[ t�m′.

I Whenever on the path from the root r to n there exists a node n′′ with value m′′

such that m′′ < m′, then update m′ by m′(p) := ω for all places p with
m′′(p) < m′(p).

I Introduce a new successor node n′ of n with value m′ and mark the edge from n to
n′ by t.

I If there already exists another node in the tree with the same value m′, node n′ is
not considered any further.

I A coverability graph is derived from a coverability tree by taking the values of the
nodes in the tree as nodes in the graph.
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Give a coverability tree.
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A eS-net with two different coverability graphs.
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Two eS-Nets with identical coverability graphs.
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Theorem

The coverability graph CG(N) = (R,B) of a eS-net N is finite.

Proof:
Assume CG(N) is not finite. Then it contains an infinite number of nodes. Thus there
exists an infinite, weakly monotonic sequence of ω-markings, i.e. values of the nodes in
the tree. Because of the construction of the auxiliary tree T (N), such an infinite
sequence cannot exist, as we can introduce ω only a finite number of times.
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To test the reachability of a certain marking we may first test its coverability and then
try to find a firing sequence which confirms its reachability.

Is marking m = (0, 3, 1, 3) reachable?

Yes, using the word w = t6
1 t2t

3
3 .
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Live, dead and deadlockfree

Let N = (P,T ,F ,V ,m0) a eS-Net.

I A marking m is called dead in N, if there is no t ∈ T which is enabled at m.

I A transition t is called dead at marking m, if there is no marking reachable from
m, such that t is enabled.

If t dead at m0, then t is called dead in N.

I A transition t is called live at marking m, if for any reachable marking from m it
holds that t is not dead.
If m = m0, then t is called live in N.

I A marking m is called live in N if all transitionen t ∈ T are live in m. If m = m0

then N is called live.

I N is called deadlockfree, if no dead marking is reachable.

Note: whenever a transition is dead at some m, then it is not live at m.

However, the other direction does not hold.
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Firing the word t3t1t2 results in a dead marking (0, 0). The coverability graph does not
indicate this!

Lifeness cannnot be tested by inspection of the coverability graph.

Do there exist other techniques for analysis?
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Section 7.4 Invariants

Basics

I A Petri-net invariant is a property of a Petri-net, which holds for any marking,
respectively transition word, of the net.

I We study place- and transition-invariants, which are based on a matrix
representation of a net, respectively vector representation of markings and
transitions.

Incidence Matrix

I Let N = (P,T ,F ,V ,m0) a eS-Net, T = {t1, . . . , tn}, P = {p1, . . . , pm},
n,m ≥ 1.

I A vector of dimension n (m) is called T - (P-)vector.

I For any t ∈ T , ∆t can be represented as a column P-vector.

I The incidence matrix of N is given as a m × n-matrix C = (∆t1, . . . ,∆tn),
respectively C = (ci,j)1≤i≤m,1≤j≤n, where cij := ∆tj(si ).
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Example
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I Incidence matrices are independent of concrete markings,

I In case of loops, information concerning multiplicities is lost.

Parikh-Vektor

The transpose of a vector x , resp. matrix C is denoted by x>, bzw. C>.

The Parikh-Vektor q̄ of some q ∈W (T ) is a column T -vector, n =| T |, defined as
follows:

q̄ : T → NAT , where q̄(t) is the number of occurences of t in q.
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State Equation

Let q ∈W (T ) and m,m′ markings.

If m[ q�m′, then
∑

t∈T
(q̄(t) ·∆t) = C · q̄ = ∆q.

Moreover, as m[ q�m′, we have

I m′ = m + ∆q>.

The equation:
m′ = m + (C · q̄)>

is called state equation.

I The system of linear equations given by

C · x = (m′ −m)>

has an integer nonnegative solution x .
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however the following does not hold in general:

If C · x = (m′ −m)> has an integer nonnegative solution then

∃q ∈W (T ) : m[ q�m′,
I.e., the reachability problem cannot be solved, in general.

Example

Let m = (1, 0, 0), m′ = (0, 0, 1).
x = (0, 1, 1, 0)> is a solution for C · x = (m′ −m)>, however we cannot find a word
which can be fired at m.
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Theorem

Let N be a eS-Net and ∆ a P-vector. There exists a marking m∗ and a word
q ∈W (T ), such that m∗[ q�(m∗ + ∆), iff C · x = ∆> has an integer nonnegative
solution.

Proof:
”⇒”: trivial.

”⇐”: Let m∗ :=
∑

t∈T
x(t) · t−.
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Corollary

Let N = (P,T ,F ,V ,m0) be a eS-Net. There exists a marking m∗ such that
N = (P,T , F ,V ,m∗) unbounded, iff C · x > 0 has an integer nonnegative solution.

Useful application of the corollary:

If there does not exist an integer nonnegative solution for C · x > 0, then for any initial
marking, N is bounded.

Dr.-Ing. Thomas Hornung SS 2013 Seite 47



SS 2013 7. Petri-Nets 7.4. Invariants

Transition-Invariants (T-Invariants)

Let N = (P,T ,F ,V ,m0) be a eS-Net.

I Any nontrivial integer solution x of the homogenous linear equation system
C · x = 0 is called transition-invariant (T-invariant) of N.

I A T-invariant x is called proper, if x ≥ 0.

I A T-invariant x is called realizable in N, if there exists a word q ∈W (T ) with
q̄ = x and a reachable marking m such that m[ q�m.

I N is called covered with T-invariants, if there exists a T-invariant x of N with all
components positive, i.e. greater than 0.

Proper T-invariants denote possible cycles of the reachability graph - realizable
T-invariants denote cycles which indeed may occur.
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Example

T-invariants of

are as follows:

x = λ1




1
1
2
0


+ λ2




0
0
0
1




where λ1, λ2 integers.
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Theorem

Let N = (S ,T ,F ,V ,m0) be a eS-Net. If there exists a marking m, such that N live
and bounded at m, then N covered by T-invariants.

Proof: Let N live and bounded at some m.

As N is live at m, there exists a word q1 ∈ LN(m), which contains all transitions in T and the
marking m + ∆q1 is reachable from m.

Moreover, N is live at m + ∆q1 as well. Therefore, there exits a word q2 ∈ LN(m), which
contains all transitions in T and N is live at the marking m + ∆q1q2.

There exists an infinite sequence of markings (mi ), where mi := m + ∆q1 . . . qi , such that:

m[ q1�m1[ q2�m2 . . .mi [ qi+1�mi+1 . . .

As N is bounded at m, there is only a finite number of markings which are reachable.
Therefore, there exist i , j ∈ NAT : i < j such that mi = mj . Thus

mi [ qi+1 . . . qj �mj = mi

As all these qi mention all transitions, we finally conclude

x = q̄i+1 + . . .+ q̄j

is a T-Invariant which covers N.
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Useful application of the theorem:

Whenever N is not covered by T-invariants, then for every marking it holds N not live
or not bounded.
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Place-Invariants (P-Invariants)

Let N = (P,T ,F ,V ,m0) be a eS-Net.

I Any nontrivial integer solution y of the homogeneous linear equation system
y · C = 0 is called place-invariant (P-invariant) of N.

I A P-invariant y is called proper P-invariant, if y ≥ 0.

I N is called covered with P-invariants, if there exists a P-invariant y with all
components positive, i.e. greater than 0.

If y is a P-invariant, then for any marking m the sum of the number of tokens on the
places p is invariant with respect to the firing of the transitions weighted by y(p).
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Example

P-invariants of

are as follows:

yT = λ




1
1
1




where λ an integer.

Dr.-Ing. Thomas Hornung SS 2013 Seite 53



SS 2013 7. Petri-Nets 7.4. Invariants

Theorem

Let N = (P,T ,F ,V ,m0) a eS-Net and let y a P-invariant of N. Then:

m ∈ RN(m0)⇒ y ·m> = y ·m>0 .

Proof:
Assume m0[ q�m. Then m = m0 + (C · q̄)> and also:

y ·m> = y ·m>0 + y · (C · q̄) =

= y ·m>0 + (y · C) · q̄ = y ·m>0 + 0 · q̄ = y ·m>0 .
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Corollary:

I Let y P-invariante of N, m marking.

y ·m> 6= y ·m>0 ⇒ m 6∈ RN(m0).

I Let y proper P-invariant of N. Let p ∈ P such that y(p) > 0.

Then, for any initial marking, p is bounded.

Proof: y ·m>0 = y ·m> ≥ y(p) ·m(p) ≥ m(p).

I Let N be covered by P-invariants. N is bounded for any initial marking.
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Note, the following net is bounded for any initial marking, however does not have a
P-invariant:

P-invariants allow sufficient tests for non-reachability and boundedeness.
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Example: Prove freedom from deadlocks.

C =




−1 −1 −1 1 1 1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0

0 −1 0 0 1 0
0 0 −1 0 0 1




P-invariants:

Y1 = (0, 1, 0, 0, 1, 0, 0)

Y2 = (0, 0, 1, 0, 0, 1, 0)

Y3 = (0, 0, 0, 1, 0, 0, 1)

Y4 = (1, 1, 1, 1, 0, 0, 0)

Initial marking is given by m0 = (2, 0, 0, 0, 1, 1, 1). Assume there exist a dead marking m, m0[ q�m. Then
it must hold m(p1) = m(p2) = m(p3) = 0. Because of Y4 it follows m(p0) = 2. As m dead it follows
m(p4) = m(p5) = m(p6) = 0. However this contradicts Y1m0 = Y1m.
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Section 7.5 Place Capacities

Sometimes when modelling we would like to fix an upper bound for the number of
tokens in a place.

I Let N = (P,T ,F ,V ,m0) be a eS-Net, c a ω-marking of P and let m0 ≤ c.
(N, c) is called eS-Net with capacities. c(p), p ∈ P is called capacity of p.

I For eS-nets with capacities the notion of being enabled is adapted:

a transition t ∈ T is enabled at marking m, if t− ≤ m and
m + ∆t ≤ c.

I Capacities graphically are labels of places - no label means capacity ω.
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Any eS-net with capacities can be simulated by a eS-Net without capacities.

Construction

I Let p a palce with capacity k = c(p), k ≥ 1. Let pco be the complementary place
of p which is assigned the initial marking k −m0(p).

I Whenever for a transition t we have ∆t(p) > 0, we introduce an arc from pco to
t with multiplicity ∆t(p);
whenever ∆t(p) < 0, we introduce an arc from t to pco with multiplicity −∆t(p).
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A eS-Net with capacities and its simulation by a bounded eS-Net.
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Section 7.6 S-Nets with Colors

I eS-Nets in practice may become huge and difficult to understand.

I Sometimes such nets exhibit certain regularities which give rise to questions how
to reduce the size of the net without losing modeling properties.
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What about a n-philosopher problem with n >> 3?

i 1

b 2

e
2

e
3

b 3

b 1

e1 

i 2 i 3

g 1 g 2 g 3

i 1

b 2

e
2

e
3

b 3

b 1

e1 

i 2 i 3

g 1 g 2 g 3

i 1

b 2

e
2

e
3

b 3

b 1

e1 

i 2 i 3

g 1 g 2 g 3

Why not introduce tokens with individual information?
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Abstraction 5-philosopher problem

Note: the intention of the marking shown only is to demonstrate
”
individual“ tokens.

What about being enabled and firing?
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Colored System-Nets

A colored System-Net distinguishes different kinds of sorts for markings - the so called
colors - and functions over these sorts which are used to label the edges of the net.

Generalizing eS-Nets, in a colored net a transition will be called enabled, if certain
conditions are true, which are based on the functions which are assigned to the edges
of the transitions surrounding.

Thus, we have colors, to characterize markings (place colors), and colors, to
characterize the firing of transitions (transition colors).

As a marking of a place now can be built out of different kind of tokens, we introduce
multisets.

I Let A be a set. A multiset m over A is given by a maping m : A→ NAT .

I Let a ∈ A. If m[a] = k then there exist k occurences of a in m.

I A multiset oftenly is written as a (formal) sum, e.g. [Apple,Apple,Pear ] is
written as 2 · Apple + 1 · Pear .
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A colored version of the 3-Philosopher-Problem

b e 

ID

g

RL

g1 

g2 

g3 RL

ID
i

b e 

ID

g

RL

g1 

g2 

g3 RL

ID
i

Colors

C(g) = {g1, g2, g3}, C(i) = {ph1, ph2, ph3} place colors

C(b) = {ph1, ph2, ph3}, C(e) = {ph1, ph2, ph3} transition colors

Functions

ID(phj ) := 1 · phj , 1 ≤ j ≤ 3

RL(phj ) :=

{
1 · g1 + 1 · g3 if j = 1,
1 · gj−1 + 1 · gj if j ∈ {2, 3}.
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Multiplicities

A multiplicity assigned to an edge between a place p and a transition t is a mapping
from the set of transition colors of t into the set of multisets over the colors of p.

In the example:

V (b, i) = V (i , e) = ID, V (g , b) = V (e, g) = RL,

where:
ID(phj) := 1 · phj , 1 ≤ j ≤ 3

RL(phj) :=

{
1 · g1 + 1 · g3 if j = 1,
1 · gj−1 + 1 · gj if j ∈ {2, 3}.

ID denotes the identity mapping.

Marking

Markings are multisets over the respective place colors.

In the example:

m0(p) :=

{
1 · g1 + 1 · g2 + 1 · g3 if p = g ,
0 otherwise.
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A colored Net CN = (P,T ,F ,C ,V ,m0) is given by:

I A net (P,T ,F ).

I A mapping C which assignes to each x ∈ P ∪ T a finite nonempty set C(x) of
colors.

I Mapping V assignes to each edge f ∈ F a mapping V (f ).

Let f be an edge connecting palce p and transition t.

V (f ) is a mapping from C(t) into the set of multisets over C(p).

I m0 is the initial marking given by a mapping which assignes to each place p a
multiset m0(p) over C(p).
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Let CN = (P,T ,F ,C ,V ,m0) be a colored System-Net.

I A marking m of P is mapping which assignes to each place p a multiset m(p)
over C(p).

I A transition t is enabled in color d ∈ C(t) at m, if for all pre-places p ∈ Ft there
holds:

V (p, t)(d) ≤ m(p).

I Assume t is enabled in color d at marking m. Firing of t in color d transforms m
to a marking m′:

m′(p) :=





m(p)− V (p, t)(d) + V (t, p)(d) if p ∈ Ft,
p ∈ tF ,

m(p)− V (p, t)(d) if p ∈ Ft,,
p 6∈ tF ,

m(p) + V (t, p)(d) if p 6∈ Ft,,
p ∈ tF ,

m(p) otherwise.
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Fold and Unfold of a Colored System-Net

Folding

By folding of a eS-Net we can reduce the number of places and transitions; places and
transitions are represented by appropriate place and transition colors, on which certain
functions defining the multiplicities are defined.

Let N = (P,T ,F ,V ,m0) a eS-Net. A folding is defined by π and τ :

I π = {q1, . . . , qk} a (disjoint) partition of P,

I τ = {u1, . . . , un} a (disjoint) partition of T .
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Two special cases

Call GN(π, τ) := (P ′,T ′,F ′,C ′,V ′,m′0) the result of folding.

I All elements of π, τ are one-elementary:

⇒ N and GN(π, τ) are isomorph,

I π, τ contain only one element:

⇒ |P ′| = |T ′| = 1, ”the model is represented by the labellings”.
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3-Philosopher-Problem

i 1

b 2

e
2

e
3

b 3

b 1

e1 

i 2 i 3

g 1 g 2 g 3

i 1

b 2

e
2

e
3

b 3

b 1

e1 

i 2 i 3

g 1 g 2 g 3

i 1

b 2

e
2

e
3

b 3

b 1

e1 

i 2 i 3

g 1 g 2 g 3

Folding π = {{g1, g2, g3}, {i1, i2, i3}}, τ = {{b1, b2, b3}, {e1, e2, e3}}.
Colors from folding:
C(g) = {g1, g2, g3},C(i) = {i1, i2, i3},C(b) = {b1, b2, b3},C(e) = {e1, e2, e3}
Multiplicities: ID,RL analogously to previous version.

b e 

ID

g

RL

g1 

g2 

g3 RL

ID
i

b e 

ID

g

RL

g1 

g2 

g3 RL

ID
i
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3-Philosopher-Problem?
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Given π = {q1, . . . , qk}, τ = {u1, . . . , un}.
The folding GN(π, τ) := (P ′,T ′,F ′,C ′,V ′,m′0) of N is defined as follows:

I P′ := {p′1, . . . , p′k}; T ′ := {t′1, . . . , t′n},
I C ′(p′i ) = qi für i = 1, . . . , k; C ′(t′j ) = uj für j = 1, . . . , n,

I F ′ := {(p′, t′) | C ′(p′)× C ′(t′) ∩ F 6= ∅} ∪
{(t′, p′) | C ′(t′)× C ′(p′) ∩ F 6= ∅},

I f ′ = (p′, t′) ∈ F ′: V ′(f ′) is defined (t ∈ C ′(t′)):

V ′(f ′)(t) =
∑

p∈C ′(p′)
t−(p) · p,

I f ′ = (t′, p′) ∈ F ′: V ′(f ′) is defined (t ∈ C ′(t′)):

V ′(f ′)(t) =
∑

p∈C ′(p′)
t+(p) · p,

I m′0(p′) :=
∑

p∈C ′(p′)
m0(p) · p.
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Unfolding

Let GN = (P,T ,F ,C ,V ,m0) a CN-Net.

The Unfolding of GN is a eS-Net GN∗ := (P∗,T ∗, F ∗,V ∗,m∗0 ) given as follows:

I P∗ := {(p, c) | p ∈ P, c ∈ C(p)},
I T ∗ := {(t, d) | t ∈ T , d ∈ C(t)},

I F ∗ := {((p, c), (t, d)) | (p, t) ∈ F ,V (p, t)(d)[c] > 0} ∪
{((t, d), (p, c)) | (t, p) ∈ F ,V (t, p)(d)[p] > 0}.

I V ∗((p, c), (t, d)) := V (p, t)(d)[c],

I V ∗((t, d), (p, c)) := V (t, p)(d)[c],

I m∗0 (p, c) := m0(p)[c].
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Definition

Let E be a certain property of a net, e.g. boundedness, liveness, or reachability.

A CS-Net GN has property E , whenever its unfolding GN∗ has property E .

Analysis of colored System Nets

I Analyse unfolding:

Advantage: Methods exist,
Pitfall: Unfoldings may be huge eS-Nets.

I Analyse colored net:

I Reachability graph and coverability graph can be defined in analogous way
to eS-Nets.

I There exists a theory for invariants, as well.
I Tools for simulation and analysis are available.
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