Course Evaluation

Evaluation period from 01.07. - 19.07.

The course evaluation is now online available at:

https://ilias.uni-freiburg.de/goto.php?target=svy_74197&client_id=unifreiburg
Recap Petri Net basics

\[N = (P, I, F, V, m_0) \]

\[T = \{ t_1, t_2 \} \]

\[m_0 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \]

\[\Delta t_1 = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \]

\[\Delta t_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \]

\[t_1^+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]

\[t_2^+ = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]
Chapter 7: Modeling and Analysis of Distributed Applications

Petri-Nets

- Petri-nets are abstract formal models capturing the flow of information and objects in a way which makes it possible to describe distributed systems and processes at different levels of abstraction in a unified language.
- Petri-nets have the name from their inventor Carl Adam Petri, who introduced this formalism in his PhD-thesis 1962.
Processing of complaints: informal description.

- Customer inquiring
- Archive
- Complaint registration
- Complaint processing
Complaints processing: formal Petri-net orchestration.1

Complaints processing: more than one complaint
Complaints processing: how to distinguish complaints
Complaints processing: keeping things together

[Diagram of Petri-net]
Petri-nets

Petri-nets model system dynamics.

- Activities trigger state transitions,
- activities impose control structures,
- applicable for modelling discrete systems.

Benefits

- Uniform language,
- can be used to model sequential, causal independent (concurrent, parallel, nondeterministic) and monitored exclusive activities.
- open for formal analysis, verification and simulation,
- graphical intuitive representation.

The name *Petri-net* denotes a variety of different versions of nets - we will discuss the special case of *System Nets* following the naming introduced by W. Reisig.
Petri-nets

Petri-nets model system dynamics.

- Activities trigger state transitions,
- activities impose control structures,
- applicable for modelling discrete systems.

Benefits

- Uniform language,
- can be used to model sequential, causal independent (concurrent, parallel, nondeterministic) and monitored exclusive activities.
- open for formal analysis, verification and simulation,
- graphical intuitive representation.

The name *Petri-net* denotes a variety of different versions of nets - we will discuss the special case of *System Nets* following the naming introduced by W. Reisig.
Petri-nets

Petri-nets model system dynamics.

- Activities trigger state transitions,
- activities impose control structures,
- applicable for modelling discrete systems.

Benefits

- Uniform language,
- can be used to model sequential, causal independent (concurrent, parallel, nondeterministic) and monitored exclusive activities.
- open for formal analysis, verification and simulation,
- graphical intuitive representation.

The name *Petri-net* denotes a variety of different versions of nets - we will discuss the special case of *System Nets* following the naming introduced by W. Reisig.
Section 7.1 Elementary System Nets

Basic elements of an elementary System Net (eS-Net)

- System states are represented by *places*, graphically circles or ovals.
- A place may be marked by an arbitrary number of *tokens* graphically represented by black dots.
- System dynamics is represented by *transitions*, graphically rectangles.
- *Transitions* represent activities (events) and the causalities between such activities (events) are represented by edges.
- *Multiplicities* represent the consumption, respectively creation of resources which are caused by the *occurrence* of activities.
Section 7.1 Elementary System Nets

<table>
<thead>
<tr>
<th>Basic elements of an elementary System Net (eS-Net)</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ System states are represented by places, graphically circles or ovals.</td>
</tr>
<tr>
<td>■ A place may be marked by an arbitrary number of tokens graphically represented by black dots.</td>
</tr>
<tr>
<td>■ System dynamics is represented by transitions, graphically rectangles.</td>
</tr>
<tr>
<td>■ Transitions represent activities (events) and the causalities between such activities (events) are represented by edges.</td>
</tr>
<tr>
<td>■ Multiplicities represent the consumption, respectively creation of resources which are caused by the occurrence of activities.</td>
</tr>
</tbody>
</table>
Section 7.1 Elementary System Nets

Basic elements of an elementary System Net (eS-Net)

- System states are represented by *places*, graphically circles or ovals.
- A place may be marked by an arbitrary number of *tokens* graphically represented by black dots.
- System dynamics is represented by *transitions*, graphically rectangles.
- *Transitions* represent activities (events) and the causalities between such activities (events) are represented by edges.
- *Multiplicities* represent the consumption, respectively creation of resources which are caused by the *occurrence* of activities.
3-Philosopher-Problem

\(b_j \): philosopher starts eating; \(e_j \): philosopher stops eating;
\(i_j \): philosopher is eating; \(g_j \): fork on the desk;
\(1 \leq j \leq 3 \).
A transition may occur when certain conditions with respect to the markings of its directly connected places are fulfilled; the occurrence of a transition - also called its firing - effects the markings of its directly connected edges, i.e. has local effects.

The surrounding of a transition \(t \) is given by \(t \) and all its directly connected places:

\[s_1, \ldots, s_k \text{ are called preconditions (pre-places), } s_{k+1}, \ldots, s_n \text{ postconditions (post-places).} \]

A place which is pre- and post-place at the same time is called a loop.
A transition may occur when certain conditions with respect to the markings of its directly connected places are fulfilled; the occurrence of a transition - also called its firing - effects the markings of its directly connected edges, i.e. has local effects.

The surrounding of a transition t is given by t and all its directly connected places:

\[
\begin{array}{c}
\text{s}_1 \\
\vdots \\
\text{s}_k \\
\leftrightarrow \\
\text{s}_{k+1} \\
\vdots \\
\text{s}_n
\end{array}
\]

s_1, \ldots, s_k are called preconditions (pre-places), s_{k+1}, \ldots, s_n postconditions (post-places).

A place which is pre- and post-place at the same time is called a loop.
A transition *may* occur when certain conditions with respect to the markings of its directly connected places are fulfilled; the *occurrence* of a transition - also called its *firing* - effects the markings of its directly connected edges, i.e. has local effects.

The *surrounding* of a transition \(t \) is given by \(t \) and all its directly connected places:

\[
\begin{array}{c}
\text{s}_1 \\
\vdots \\
\text{s}_k \\
\text{t} \\
\vdots \\
\text{s}_{k+1} \\
\text{s}_n
\end{array}
\]

\(\text{s}_1, \ldots, \text{s}_k \) are called *preconditions* (*pre-places*), \(\text{s}_{k+1}, \ldots, \text{s}_n \) *postconditions* (*post-places*).

A place which is pre- and post-place at the same time is called a *loop*.
A *net* is given as a tripel \(N = (P, T, F) \), where

- \(P \), the set of *places*, and \(T \), the set of *transitionen*, are non-empty disjoint sets,
- \(F \subseteq (P \times T) \cup (T \times P) \), is the set of directed edges, called *flow relation*, which is a binary relation such that \(\text{dom}(F) \cup \text{cod}(F) = P \cup T \).

Let \(N = (P, T, F) \) be a net and \(x \in P \cup T \).

\[
x F := \{ y \mid (x, y) \in F \}
F x := \{ y \mid (y, x) \in F \}
\]

For \(p \in P \), \(p F \) is the set of *post-transitions* of \(p \); \(F p \) is the set of *pre-transitions* of \(p \).
For \(t \in T \), \(t F \) is the set of *post-places* of \(t \); \(F t \) is the set of *pre-places* of \(t \).
A net is given as a tripel \(N = (P, T, F) \), where

- \(P \), the set of places, and \(T \), the set of transitionen, are non-empty disjoint sets,
- \(F \subseteq (P \times T) \cup (T \times P) \), is the set of directed edges, called flow relation, which is a binary relation such that \(\text{dom}(F) \cup \text{cod}(F) = P \cup T \).

Let \(N = (P, T, F) \) be a net and \(x \in P \cup T \).

\[
\begin{align*}
xE & := \{ y \mid (x, y) \in F \} \\
Fx & := \{ y \mid (y, x) \in F \}
\end{align*}
\]

For \(p \in P \), \(pF \) is the set of post-transitions of \(p \); \(Fp \) is the set of pre-transitions of \(p \).
For \(t \in T \), \(tF \) is the set of post-places of \(t \); \(Ft \) is the set of pre-places of \(t \).
Let $N = (P, T, F)$ be a net. Any mapping m from P into the set of natural numbers NAT is called a *marking* of P.

A mapping $P \rightarrow \text{NAT} \cup \{\omega\}$ is called ω-*marking*. ω represents an infinitely large number of tokens.

Arithmetic of ω:

$$\omega - n = \omega, \omega + n = \omega, n \cdot \omega = \omega, 0 \cdot \omega = 0, \omega > n$$

where $n \in \text{NAT}, n > 0$.

A *marking* represents a possible system state.
Let $N = (P, T, F)$ be a net. Any mapping m from P into the set of natural numbers NAT is called a marking of P.

A mapping $P \rightarrow \text{NAT} \cup \{\omega\}$ is called ω-marking. ω represents an infinitely large number of tokens.

Arithmetic of ω:

$$\omega - n = \omega, \omega + n = \omega, n \cdot \omega = \omega, 0 \cdot \omega = 0, \omega > n$$

where $n \in \text{NAT}, n > 0$.

A marking represents a possible system state.
Let $N = (P, T, F)$ be a net. Any mapping m from P into the set of natural numbers \mathbb{N} is called a *marking* of P.

A mapping $P \rightarrow \mathbb{N} \cup \{\omega\}$ is called ω-*marking*. ω represents an infinitely large number of tokens.

Arithmetic of ω:

$$\omega - n = \omega, \quad \omega + n = \omega, \quad n \cdot \omega = \omega, \quad 0 \cdot \omega = 0, \quad \omega > n$$

where $n \in \mathbb{N}$, $n > 0$.

A *marking* represents a possible system state.
Let $N = (P, T, F)$ be a net. Any mapping m from P into the set of natural numbers NAT is called a marking of P.

A mapping $P \to \text{NAT} \cup \{\omega\}$ is called ω-marking. ω represents an infinitely large number of tokens.

Arithmetic of ω:

\[
\omega - n = \omega, \quad \omega + n = \omega, \quad n \cdot \omega = \omega, \quad 0 \cdot \omega = 0, \quad \omega > n
\]

where $n \in \text{NAT}, n > 0$.

A marking represents a possible system state.
A eS-Net is given as \(N = (P, T, F, V, m_0) \), where
- \((P, T, F)\) a net,
- \(V : F \rightarrow \text{NAT}^+ \) a multiplicity,
- \(m_0 \) a marking called initial marking.

\(N \) is called ordinary eS-Net, whenever \(V(f) = 1, \forall f \in F \).
A eS-Net is given as \(N = (P, T, F, V, m_0) \), where

- \((P, T, F)\) a net,
- \(V : F \rightarrow \mathbb{NAT}^+\) a multiplicity,
- \(m_0\) a marking called initial marking.

\(N\) is called ordinary eS-Net, whenever \(V(f) = 1, \forall f \in F\).
A transition may fire once it is enabled.

Let \(N = (P, T, F, V, m_0) \) a eS-Net, \(m \) a marking and \(t \in T \) a transition.

- \(t \) is enabled at \(m \), if for all pre-places \(p \in Ft \) there holds:
 \[
 m(p) \geq V(p, t).
 \]

Whenever \(t \) is enabled at \(m \), then \(t \) may fire at \(m \). Firing \(t \) at \(m \) transforms \(m \) to \(m' \), \(m'[t > m'] \), in the following way:

\[
m'(p) := \begin{cases}
 m(p) - V(p, t) + V(t, p) & \text{falls } p \in Ft, p \in tF, \\
 m(p) - V(p, t) & \text{falls } p \in Ft, p \not\in tF, \\
 m(p) + V(t, p) & \text{falls } p \notin Ft, p \in tF, \\
 m(p) & \text{sonst.}
\end{cases}
\]
A transition may fire once it is enabled.

Let $N = (P, T, F, V, m_0)$ a eS-Net, m a marking and $t \in T$ a transition.

- t is enabled at m, if for all pre-places $p \in Ft$ there holds:
 $$m(p) \geq V(p, t).$$

- Whenever t is enabled at m, then t may fire at m. Firing t at m transforms m to m', $m[t > m']$, in the following way:

$$m'(p) := \begin{cases}
 m(p) - V(p, t) + V(t, p) & \text{falls } p \in Ft, p \in tF, \\
 m(p) - V(p, t) & \text{falls } p \in Ft, p \notin tF, \\
 m(p) + V(t, p) & \text{falls } p \notin Ft, p \in tF, \\
 m(p) & \text{sonst.}
\end{cases}$$
A transition may fire once it is enabled.

Let $N = (P, T, F, V, m_0)$ a eS-Net, m a marking and $t \in T$ a transition.

- **t is enabled at m**, if for all pre-places $p \in Ft$ there holds:
 \[m(p) \geq V(p, t). \]

- Whenever t is enabled at m, then t may fire at m. Firing t at m transforms m to m', $m[t \xrightarrow{} m']$, in the following way:

$$m'(p) := \begin{cases}
 m(p) - V(p, t) + V(t, p) & \text{falls } p \in Ft, p \in tF, \\
 m(p) - V(p, t) & \text{falls } p \in Ft, p \notin tF, \\
 m(p) + V(t, p) & \text{falls } p \notin Ft, p \in tF, \\
 m(p) & \text{sonst.}
\end{cases}$$
Transitions and markings in terms of vectors

Let places in P be linearly ordered.

- Markings of a net can be considered as vectors of nonnegative integers of dimension $|P|$, called *place-vectors*.
- Transitions t can be characterized as vectors of nonnegative integers of dimension $|P|$, called *transition vectors* $\Delta t, t^+, t^-$:

Let $N = (P, T, F, V, m_0)$ a eS-Net, $p \in P$ and $t \in T$.

$$
t^+(p) := \begin{cases}
V(t, p) & \text{if } p \in tF, \\
0 & \text{sonst.}
\end{cases}
$$

$$
t^-(p) := \begin{cases}
V(p, t) & \text{if } p \in Ft, \\
0 & \text{sonst.}
\end{cases}
$$

$$
\Delta t(p) := t^+(p) - t^-(p).
$$
Transitions and markings in terms of vectors

Let places in P be linearly ordered.

- Markings of a net can be considered as vectors of nonnegative integers of dimension $|P|$, called place-vectors.

- Transitions t can be characterized as vectors of nonnegative integers of dimension $|P|$, called transition vectors $\Delta t, t^+, t^-$:

Let $N = (P, T, F, V, m_0)$ a eS-Net, $p \in P$ and $t \in T$.

\[
t^+(p) := \begin{cases}
V(t, p) & \text{if } p \in tF, \\
0 & \text{sonst.}
\end{cases}
\]

\[
t^-(p) := \begin{cases}
V(p, t) & \text{if } p \in Ft, \\
0 & \text{sonst.}
\end{cases}
\]

\[
\Delta t(p) := t^+(p) - t^-(p).
\]
Transitions and markings in terms of vectors

Let places in P be linearly ordered.

- Markings of a net can be considered as vectors of nonnegative integers of dimension $|P|$, called place-vectors.

- Transitions t can be characterized as vectors of nonnegative integers of dimension $|P|$, called transition vectors $\Delta t, t^+, t^-$:

Let $N = (P, T, F, V, m_0)$ a eS-Net, $p \in P$ and $t \in T$.

\[
\begin{align*}
 t^+(p) &:= \begin{cases}
 V(t, p) & \text{if } p \in tF, \\
 0 & \text{sonst.}
 \end{cases} \\
 t^-(p) &:= \begin{cases}
 V(p, t) & \text{if } p \in Ft, \\
 0 & \text{sonst.}
 \end{cases} \\
 \Delta t(p) &:= t^+(p) - t^-(p).
\end{align*}
\]
Transitions and markings in terms of vectors

Let places in \(P \) be linearly ordered.

- Markings of a net can be considered as vectors of nonnegative integers of dimension \(| P |\), called place-vectors.
- Transitions \(t \) can be characterized as vectors of nonnegative integers of dimension \(| P |\), called transition vectors \(\Delta t, t^+, t^- \):

Let \(N = (P, T, F, V, m_0) \) a eS-Net, \(p \in P \) and \(t \in T \).

\[
\begin{align*}
t^+(p) &:= \begin{cases} V(t, p) & \text{if } p \in tF, \\ 0 & \text{sonst.} \end{cases} \\
t^-(p) &:= \begin{cases} V(p, t) & \text{if } p \in Ft, \\ 0 & \text{sonst.} \end{cases} \\
\Delta t(p) &:= t^+(p) - t^-(p).
\end{align*}
\]
Place and transition vectors at work:

- $m \leq m'$, if $m(p) \leq m'(p)$ for $\forall p \in P$,
- $m < m'$, if $m \leq m'$, however $m \neq m'$.
- t is enabled at m iff $t^- \leq m$,
- $m[t \succ m']$ iff $t^- \leq m$ and $m' = m + \Delta t$.

Place and transition vectors at work:

- $m \leq m'$, if $m(p) \leq m'(p)$ for $\forall p \in P$,
- $m < m'$, if $m \leq m'$, however $m \neq m'$.
- t is enabled at m iff $t^- \leq m$,
- $m[t > m'$ if $t^- \leq m$ and $m' = m + \Delta t$.

\[\Delta t = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]
Reachability

Let \(N = (P, T, F, V, m_0) \) a eS-Net.

We denote \(W(T) \) the set of words with finite length over \(T \); \(\epsilon \in W(T) \) is called the *empty word*.

The length of a word \(w \in W(T) \) is given by \(l(w) \). We have \(l(\epsilon) = 0 \).

Let \(m, m' \) be markings of \(P \) and \(w \in W(T) \). We define a relation \(m[w \succ m'] \) inductively:

- \(m[\epsilon \succ m'] \text{ iff } m = m' \),
- Let \(t \in T, w \in W(T) \). \(m[wt \succ m'] \text{ iff } \exists m'' : m[w \succ m'', m''[t \succ m'] \).

The *reachability relation* \(\succ \) of \(N \) is defined by

\[
m[\star \succ m'] \text{ iff } \exists w : w \in W(T), m[w \succ m'];
\]

\(m' \) is reachabe from \(m \) in \(N \).
Reachability

Let $N = (P, T, F, V, m_0)$ a eS-Net.

We denote $W(T)$ the set of words with finite length over T; $\epsilon \in W(T)$ is called the empty word.

The length of a word $w \in W(T)$ is given by $l(w)$. We have $l(\epsilon) = 0$.

Let m, m' be markings of P and $w \in W(T)$. We define a relation $m[w \succ m'$ inductively:

- $m[\epsilon \succ m'$ iff $m = m'$,
- Let $t \in T, w \in W(T)$. $m[wt \succ m'$ iff $\exists m'': m[w \succ m'', m''[t \succ m']$.

The reachability relation $[\succ]$ of N is defined by

$m[\succ m'$ iff $\exists w : w \in W(T), m[w \succ m']$;

m' is reachable from m in N.
Reachability

Let \(N = (P, T, F, V, m_0) \) a eS-Net.

We denote \(W(T) \) the set of words with finite length over \(T \); \(\epsilon \in W(T) \) is called the \textit{empty word}.

The length of a word \(w \in W(T) \) is given by \(l(w) \). We have \(l(\epsilon) = 0 \).

Let \(m, m' \) be markings of \(P \) and \(w \in W(T) \). We define a relation \(m \rhd w \succ m' \) inductively:

- \(m[\epsilon \rhd m'] \iff m = m' \),
- Let \(t \in T, w \in W(T) \). \(m[wt \rhd m'] \iff \exists m'': m \rhd w \rhd m' \), \(m''[t \rhd m'] \).

The \textit{reachability relation} \(\succ \) of \(N \) is defined by

\[
m[\succ m'] \iff \exists w : w \in W(T), m \rhd w \succ m';
\]

\(m' \) is \textit{reachable} from \(m \) in \(N \).
Reachability

Let $N = (P, T, F, V, m_0)$ a eS-Net.

We denote $W(T)$ the set of words with finite length over T; $\epsilon \in W(T)$ is called the empty word.

The length of a word $w \in W(T)$ is given by $l(w)$. We have $l(\epsilon) = 0$.

Let m, m' be markings of P and $w \in W(T)$. We define a relation $m \left[w \succ m' \right]$ inductively:

- $m[\epsilon \succ m']$ iff $m = m'$,
- Let $t \in T$, $w \in W(T)$. $m[wt \succ m']$ iff $\exists m'' : m[w \succ m'], m''(t) = m'$.

The reachability relation $[\succ]$ of N is defined by

$$m[\succ m'] \iff \exists w : w \in W(T), m[w \succ m'];$$

m' is reachable from m in N.
7. Petri-Nets

7.1. Elementary System Nets

$R_N(m) := \{m' \mid m[\ast \succ m']\}$, the set of markings reachable from m by N,

$L_N(m) := \{w \mid \exists m' : m[w \succ m']\}$, the set of all words representing firing sequences of transitions of N starting at m,

$\Delta w := \sum_{i=1}^{n} \Delta t_i$, where $w = t_1 t_2 \ldots t_n$.

Results

- $[\ast \succ]$ is reflexive and transitive.
- $m[w \succ m'] \Rightarrow (m + m^*)[w \succ (m' + m^*)], \forall m^* \in \text{NAT}^P$. (Monotony)
- $m[w \succ m'] \Rightarrow m' = m + \Delta w$.
7. Petri-Nets
7.1. Elementary System Nets

- \(R_N(m) := \{ m' \mid m[\ast \succ m'] \} \), the set of markings reachable from \(m \) by \(N \),

- \(L_N(m) := \{ w \mid \exists m' : m[w \succ m'] \} \), the set of all words representing firing sequences of transitions of \(N \) starting at \(m \),

- \(\Delta w := \sum_{i=1}^{n} \Delta t_i \), where \(w = t_1 t_2 \ldots t_n \).

Results

- \([\ast \succ] \) is reflexive and transitive.
- \(m[w \succ m'] \Rightarrow (m + m^*)[w \succ (m' + m^*), \forall m^* \in NAT^{|P|}. (Monotony)\)
- \(m[w \succ m'] \Rightarrow m' = m + \Delta w \).
- $R_N(m) := \{m' \mid m[*\succ m']\}$, the set of markings reachable from m by N,

- $L_N(m) := \{w \mid \exists m' : m[w\succ m']\}$, the set of all words representing firing sequences of transitions of N starting at m,

- $\Delta w := \sum_{i=1}^{n} \Delta t_i$, where $w = t_1t_2 \ldots t_n$.

Results

- $[*\succ$ is reflexive and transitive.

- $m[w\succ m'] \Rightarrow (m + m^*)[w\succ(m' + m^*), \forall m^* \in NAT^{|P|}$. (Monotony)

- $m[w\succ m'] \Rightarrow m' = m + \Delta w$.
7. Petri-Nets

7.1. Elementary System Nets

- $R_N(m) := \{ m' | m \presucc m' \}$, the set of markings reachable from m by N,
- $L_N(m) := \{ w | \exists m' : m \presucc m' \}$, the set of all words representing firing sequences of transitions of N starting at m,
- $\Delta w := \sum_{i=1}^{n} \Delta t_i$, where $w = t_1 t_2 \ldots t_n$.

Results

- \presucc is reflexive and transitive.
- $m \presucc m' \Rightarrow (m + m^*) \presucc (m' + m^*)$, $\forall m^* \in \text{NAT}^{|P|}$ (Monotony)
- $m \presucc m' \Rightarrow m' = m + \Delta w$.

Distributed Systems Part 2 Transactional Distributed Systems Dr.-Ing. Thomas Hornung
Let \(N = (P, T, F, V, m_0) \) a eS-Net. The **Reachability graph** of \(N \) is a directed graph \(\text{EG}(N) := (R_N(m_0), B_N) \); \(R_N(m_0) \) is the set of nodes and \(B_N \) is the set of annotated edges as follows:

\[
B_N = \{ (m, t, m') \mid m, m' \in R_N(m_0), t \in T, m[t \succ m'] \}.
\]
Exercise: Give the reachability graph of the following eS-Net:

\[
R_N(m_0) = \{ (1, 0, 0, 0), (1, 1, 0, 0), (1, 2, 0, 0), (1, 3, 0, 0), \ldots, \\
(0, 0, 1, 0), (0, 1, 1, 0), (0, 2, 1, 0), (0, 3, 1, 0), \ldots, \\
(0, 0, 1, 1), (0, 1, 1, 1), (0, 0, 1, 2), (0, 2, 1, 1), (0, 1, 1, 2), (0, 0, 1, 3), \ldots \}
\]

\[
L_N(m_0) = \{ \epsilon, t_1, t_1 t_1, t_1 t_1 t_1, \ldots, \\
t_2, t_1 t_2, t_1 t_1 t_2, t_1 t_1 t_1 t_2, \ldots, \\
t_1 t_2 t_3, t_1 t_1 t_2 t_3, t_1 t_1 t_1 t_2 t_3, t_1 t_1 t_2 t_1 t_2,$$t_3 t_3, t_1 t_1 t_1 t_2 t_3 t_3 t_3, \ldots \}
\]
Section 7.2 Control Patterns

- eS-nets can be used to model causal dependencies; for modelling temporal aspects extensions of the formalism are required.

- Whenever between some transitions there are no causal dependencies, the transitions are called concurrent; concurrency is a prerequisite for parallelism.
Some typical causalities

Sequence

Iteration
AND-join, OR-join, AND-split, OR-split

AND-join

OR-join

AND-split

OR-split
OR-Split with regulation
OR-Join with regulation
A eS-Net with concurrency