Section 7.3 Analysis = >})E’F> 2
Boundedness
Let N= (P, T,F,V,mo) be a eS-Net, m a marking, p € P.
m Let k € NAT™. pis called k-bounded, if for each marking m’ there holds:

m' €_Rn(mo) = m’(p) < k.
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Section 7.3 Analysis

Boundedness
Let N= (P, T,F,V,m) be a eS-Net, m a marking, p € P.
m Let k € NAT™. pis called k-bounded, if for each marking m’ there holds:

m' € Ry(mo) = m'(p) < k.

m pis called bounded, if p k-bounded for some k € NAT ™.
m N is called bounded (k-bounded), if each place is bounded (k-bounded).
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Section 7.3 Analysis O/7E\5O Mt‘:jj
N @%‘ B¢ 7-Loolod/
Boundedness

Let N= (P, T,F,V,m) be a eS-Net, m a marking, p € P.
m Let k € NAT™. pis called k-bounded, if for each marking m’ there holds:

m' € Ry(mo) = m'(p) < k.

m pis called bounded, if p k-bounded for some k € NAT .
m N is called bounded (k-bounded), if each place is bounded (k-bounded).

m A eS-net is called_safe, if it is 1-bounded. Places of a bounded net may be
interpreted as boolean conditions.
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Theorem

Let N= (P, T,F,V,mo) be a eS-Net. N is unbounded, i.e. not bounded, iff there
exist w € W(T), m,m’ € Ry(mo), such that m[w>=m’ and m’ > m.
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Theorem

Let N= (P, T,F,V,m) be a eS-Net. N is unbounded, i.e. not bounded, iff there
exist w € W(T), m,m’ € Ry(mo), such that m[w>=m’ and m’ > m.

Proof «
Let w € W(T), m,m’ € Ry(mo), such that m{w>m’ and m" > m. It holds

mlws=m'[w=m"[w>=m"".. .,

where m<m' <m”" <m"” <...

Thus there must exist at least one unbounded place.
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To proof = we first proof:
Lemma

For each infinite sequence of markings (m;) of markings there exists an infinite
subsequence (m}), which is weakly monotonic, i.e. | < k implies m; < myj.

Distributed Systems Part 2

Transactional Distributed Systems

Ing. Thomas Hornung



To proof = we first proof: é \}

Lemma 1 - 2

For each infinite sequence of markings (m;) of markings there exists an infinite
subsequence (m}), which is weakly monotonic, i.e. | < k implies m; < myj.

To prove the Lemma, first extract an infinite subsequence for which weak monotonicity holds
for the first components of its markings. Then extract from that subsequence an infinite
subsequence for which weak monotonicity holds for the second components of its markings,
etc.
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Proof =

m Consider the reachability graph EG(N), which has an infinite number of nodes. Starting
from mg there exist a directed path to each node of the graph. Because of the finite
number of transitions, each node has only a finite number of direct successors.
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Proof =

m Consider the reachability graph EG(N), which has an infinite number of nodes. Starting
from mg there exist a directed path to each node of the graph. Because of the finite
number of transitions, each node has only a finite number of direct successors.

m Thus, at mg there start an infinite number of paths without cycles, however only a finite
number of edges. Therefore, one of these edges must be part of infinitly many paths. Let
mo — my be one such edge.
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Proof =

m Consider the reachability graph EG(N), which has an infinite number of nodes. Starting
from mg there exist a directed path to each node of the graph. Because of the finite
number of transitions, each node has only a finite number of direct successors.

m Thus, at mg there start an infinite number of paths without cycles, however only a finite
number of edges. Therefore, one of these edges must be part of infinitly many paths. Let
mo — my be one such edge.

m The same argument can be applied w.r.t. m; such that we get mg — m; — my, where
my1 — mp is part of an infinite number of paths.
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Proof =

m Consider the reachability graph EG(N), which has an infinite number of nodes. Starting
from mg there exist a directed path to each node of the graph. Because of the finite
number of transitions, each node has only a finite number of direct successors.

m Thus, at mg there start an infinite number of paths without cycles, however only a finite
number of edges. Therefore, one of these edges must be part of infinitly many paths. Let
mo — my be one such edge.

m The same argument can be applied w.r.t. m; such that we get mg — m; — my, where
my1 — mp is part of an infinite number of paths.

m The above construction can be repeated infinitly many times. Therefore there exists an
infinite sequence of markings (m;) of pairwise distinct markings, such that my, my,
0 < k < I implies:
mo[*>—mk[*>—m,.
because of the Lemma there exists an infinite weakly monotonic subsequence (mJ’) von
(m;). Let mj, m} two successive elements. From construction we have mg[* >m/[*>m},
my < m), and even m; < mj.
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Reachability
Let N= (P, T,F,V,mg) be a eS-Net, m € NAT'P! a marking. The decision problem:

m € Ry(mo)?
Sl e AN

is called reachability-problem.
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Reachability
Let N= (P, T,F,V,mg) be a eS-Net, m € NAT'P! a marking. The decision problem:

m € Ry(mo)?

is called reachability-problem.

The reachability problem is decidable, however even for bounded nets hyperexponential.
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Coverability
Let N= (P, T,F,V,mo) be a eS-Net and let m, m’ be markings of N.

m If m < m’, then m’ covers m, respectively, m is covered by m'.

m m is called coverable in N, if there exists aieachable barking m’ which covers m.

~

/TN
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Coverability
Let N= (P, T,F,V,mo) be a eS-Net and let m, m’ be markings of N.
m If m < m’, then m’ covers m, respectively, m is covered by m'.
m mis called coverable in N, if there exists a reachable marking m’ which covers m.

Consequence: Whenever a marking is not coverable w.r.t. some eS-Net N, it is not
reachable in N.
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Coverability
Let N= (P, T,F,V,mo) be a eS-Net and let m, m" be markings of N.
m If m < m’, then m" covers m, respectively, m is covered by m'.
m mis called coverable in N, if there exists a reachable marking m’ which covers m.

Consequence: Whenever a marking is not coverable w.r.t. some eS-Net N, it is not
reachable in N.

Give examples.

a As? ‘4'71‘;/“'15

/ / \ /\\

/
\\ / \._, 2
\__/'53 2,4, (’60

m: (0,7,3) (026)
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Coverability Graph

Let N=(P,T,F,V,mo) a eS-Net. The Coverability Graph of N is given by
CG(N) := (R, B) as follows:
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Coverability Graph
Let N=(P,T,F,V,mo) a eS-Net. The Coverability Graph of N is given by
CG(N) := (R, B) as follows:

m inductive definition of an auxiliary tree T(N):

The values of the nodes in T(N) are w-markings of N. The value of the root
node r is mg. Let m be the value of some node n of T(N), t € T, and m[t>m’.
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Coverability Graph

Let N=(P,T,F,V,mo) a eS-Net. The Coverability Graph of N is given by
CG(N) := (R, B) as follows:

m inductive definition of an auxiliary tree T(N):

The values of the nodes in T(N) are w-markings of N. The value of the root
node r is mg. Let m be the value of some node n of T(N), t € T, and m[t>m’.
m Whenever on the path from the root r to n there exists a node n’’ with value m’’
such that m"”” < m’, then update m’ by m’(p) := w for all places p with
m’(p) < m'(p).
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Coverability Graph

Let N=(P,T,F,V,mo) a eS-Net. The Coverability Graph of N is given by
CG(N) := (R, B) as follows:

m inductive definition of an auxiliary tree T(N):

The values of the nodes in T(N) are w-markings of N. The value of the root
node r is mg. Let m be the value of some node n of T(N), t € T, and m[t>m’.

m Whenever on the path from the root r to n there exists a node n’’ with value m’’
such that m"”” < m’, then update m’ by m’(p) := w for all places p with
m’(p) < m'(p).
B Introduce a new successor node n’ of n with value m’ and mark the edge from n to
7
n’ by t.
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Coverability Graph

Let N=(P,T,F,V,mo) a eS-Net. The Coverability Graph of N is given by
CG(N) := (R, B) as follows:

m inductive definition of an auxiliary tree T(N):

The values of the nodes in T(N) are w-markings of N. The value of the root
node r is mg. Let m be the value of some node n of T(N), t € T, and m[t>m’.

m Whenever on the path from the root r to n there exists a node n’’ with value m’’
such that m"”” < m’, then update m’ by m’(p) := w for all places p with
m’(p) < m'(p).

B Introduce a new successor node n’ of n with value m’ and mark the edge from n to
n’ by t.

B If there already exists another node in the tree with the same value m’, node n’ is
not considered any further.
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Coverability Graph

Let N=(P,T,F,V,mo) a eS-Net. The Coverability Graph of N is given by
CG(N) := (R, B) as follows:

m inductive definition of an auxiliary tree T(N):

The values of the nodes in T(N) are w-markings of N. The value of the root
node r is mg. Let m be the value of some node n of T(N), t € T, and m[t>m’.

such that m" < m’, then update m’ by m’(p) := w for all places p with

m Whenever on the path from the root r to n there exists a node n’’ with value m”)
/!

/

B Introduce a new successor node n’ of n with value m’ and mark the edge from n to
n’ by t.

B If there already exists another node in the tree with the same value m’, node n’ is
not considered any further.

m A coverability graph is derived from a coverability tree by taking the values of the
nodes in the tree as nodes in the graph.
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A eS-net with two different coverability graphs.
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Two eS-Nets with identical coverability graphs.
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Theorem
The coverability graph CG(N) = (R, B) of a eS-net N is finite.
Proof:

Assume CG(N) is_not finite. Then it contains an infinite number of nodes. Thus there

exists an infinite, weakly monotonic sequence of w-markings, i.e. values of the nodes in
the tree. Because of the construction of the auxiliary tree T(N), such an infinite
sequence cannot exist, as we can introduce w only a finite number of times.

(’I‘/_>

NECVERY,
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L s

To test the reachability of a certain marking we may first test its coverability and then
try to find a firing sequence which confirms its reachability.

_ T
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To test the reachability of a certain marking we may first test its coverability and then
try to find a firing sequence which confirms its reachability.

Is marking m = (0, 3, 1, 3) reachable?

N —~
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To test the reachability of a certain marking we may first test its coverability and then
try to find a firing sequence which confirms its reachability.

Is marking m = (0, 3, 1, 3) reachable? I ! > 29
e
=y 6 )
TG O
p2
\k" m= /0/?)1-,5)
/ P2 7] ot 1%
@ 20010
D\
t - \
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Yes, using the word w = t9t,t3.
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Live, dead and deadlockfree
Let N=(P,T,F,V,mg) a eS-Net.
m A marking m is called dead in N, if there is no t € T which is enabled at m.

m A transition t is called dead at marking m, if there is no marking reachable from
m, such that t is enabled.

If t dead at myg, then t is called dead in .
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Live, dead and deadlockfree
Let N=(P,T,F,V,mg) a eS-Net.

m A marking m is called dead in N, if there is no t € T which is enabled at m.

A transition t is called dead at marking m, if there is no marking reachable from
m, such that t is enabled.

If t dead at myg, then t is called dead in .

m A transition t is called /ive at marking m, if for any reachable marking from m it
holds that t is not dead.
If m = my, then t is called live in N.

m A marking m is called live in N if all transitionen t € T are livein m. If m = mg
then N is called live.
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Live, dead and deadlockfree
Let N=(P,T,F,V,mg) a eS-Net.

m A marking m is called dead in N, if there is no t € T which is enabled at m.

A transition t is called dead at marking m, if there is no marking reachable from
m, such that t is enabled.

If t dead at myg, then t is called dead in .

m A transition t is called live at marking m, if for any reachable marking from m it

holds that t is not .dead. o M&/PM’ Jd .- M‘o»@gf
If m = mo, then t is called live in N. !

m A marking m is called live in N if all transitionen t € T are livein m. If m = mg
then N is called live.

m N is called deadlockfree, if no dead marking is reachable.
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Live, dead and deadlockfree
Let N=(P,T,F,V,mg) a eS-Net.

m A marking m is called dead in N, if there is no t € T which is enabled at m.

A transition t is called dead at marking m, if there is no marking reachable from
m, such that t is enabled.
If t dead at mo, then t is called dead in N.

m A transition t is called /ive at marking m, if for any reachable marking from m it
holds that t is not dead.
If m = my, then t is called live in N.

m A marking m is called live in N if all transitionen t € T are livein m. If m = mg
then N is called live.

m N is called deadlockfree, if no dead marking is reachable.

Note: whenever a transition is dead at some m, then it is not live at m.

However, the other direction does not hold.
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Firing the word tstit results in a dead marking (0,0). The coverability graph does not

indicate this!

1 —e=

oX(

NS

p2

2

t1,2,3

Lifeness cannnot be tested by inspection of the coverability graph.
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Firing the word tstit results in a dead marking (0,0). The coverability graph does not

indicate this!
m
0 L2el e )2 g o
( Con )
T o dn
Tl T S
i 2 [ (w0
1 |- {3 —
9 13
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Lifeness cannnot be tested by inspection of the coverability graph.

Do there exist other techniques for analysis?
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Section 7.4 Invariants

]

Basics

m A Petri-net invariant is a property of a Petri-net, which holds for any marking,
respectively transition word, of the net.

m We study place- and transition-invariants, which are based on a _matrix

representation of a net, respectively vector representation of markings and
transitions.
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Section 7.4 Invariants
Basics

m A Petri-net invariant is a property of a Petri-net, which holds for any marking,
respectively transition word, of the net.

m We study place- and transition-invariants, which are based on a matrix

representation of a net, respectively vector representation of markings and
transitions.

Incidence Matrix

mlet N=(P,T,F,V,m)aeS-Net, T ={ts,....t.}, P={p1,...,pm},

n,m>1.

m A vector of dimension n (m) is called T- (P-)vector.
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Section 7.4 Invariants

Basics
m A Petri-net invariant is a property of a Petri-net, which holds for any marking,
respectively transition word, of the net.

m We study place- and transition-invariants, which are based on a matrix
representation of a net, respectively vector representation of markings ang\,_

transitions. P (1
r‘z - /'
2
Incidence Matrix PS

mlet N=(P, T,F,V,mg) aeS-Net, T ={t1,...,ta}, P={p1,-..,Pm}

n,m>1. —
N AJ/I - J: -+ J.A
m A vector of dimension n (m) is called T- (P-)vector.

m For any t € T, At can be represented as a column P—vector.\// \5
m The incidence matrix of N is given as a m X n-matrix C = (Aty, ..., At,),

respectively C = (¢jj)i<i<m,1<j<n, Where ¢; := At;(si).
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Example d’\]/\ll \4

o g=4%9%% 5+ (})
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m Incidence matrices are independent of concrete markings,

m In case of loops, information ing multiplicities is lost.
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m Incidence matrices are independent of concrete markings,

m In case of loops, information concerning multiplicities is lost.

Parikh-Vektor
The transpose of a vector x, resp. matrix C is denoted by x ", bzw. C .

The Parikh-Vektor G of some g € W(T) is a column T-vector, n =| T |, defined as
follows:
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State Equation
Let g € W(T) and m, m" markings.

If m[q>m’, then Z(E](t) -At)=C-g=Aqg.
teT —_—

Distributed Systems Part 2 Transactional Distributed Systems Ing. Thomas Hornung


schaetzl
Bleistift


State Equation

I
Let g € W(T) and m, m’ markings. m € RX/ '("V)>
- N
[ mig>m then Sa()- 20 = €3 = aq
= = =
L—

Moreover, as m[ g >~m’, we have
mm =m+Aqg'.
The equation:
m=m+(C-q)"

is called state equation.
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State Equation

Let g € W(T) and m, m" markings.
(T) & [

If m[q>m’, then Z(E](t) -At)=C-g=Aqg.
teT

Moreover, as m[ g=m’, we have
mm =m+Aqg'.
a-—mrag

The equation:

is called state equation.

m The system of linear equations given by
C-x=(m—-m
m— e

has an integer nonnegative solution x.
/\
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however the following does not hold in general:

If C-x=(m —m)7 has an integer nonnegative solution then
—

Jg € W(T): m[q>-m',
R S S Y

l.e., the reachability problem cannot be solved, in general.

/1
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however the following does not hold in general:

If C-x=(m'—m)T has an integer nonnegative solution then

Jg € W(T): m[q>-m',

l.e., the reachability problem cannot be solved, in general.

Example

i
N

(@) - A I N
Al D o7 /"" - m)
{ A
Pa\ O /’
V —
Let m = (1,0,0), m" = (0,0, 1).
x=(0,1,1,0)" is a solution for C - x = (m’ — m)", however we cannot find a word

which c?hrbe fired at m.

Distributed Systems Part 2 Transactional Distributed Systems Dr.-Ing. Thomas Hornung


schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift


Theorem

Let N be a eS-Net and A a P-vector. There exists a marking m* and a word

g € W(T), such that m*[g>=(m* + A), iff C-x = AT has an integer nonnegative
solution.
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Theorem

Let N be a eS-Net and A a P-vector. There exists a marking m* and a word

g € W(T), such that m*[g>=(m* + A), iff C-x = AT has an integer nonnegative
solution.

Proof:
" =" trivial.

"<": Let m* 1= Zx(t) St

teT
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Corollary

Ww)> z N

Let N= (P, T,F,V,mo) be a eS-Net. There exists a marking m* such that
N = (P, T, F,V,m") unbounded, iff C - x > 0 has an integer nonnegative solution.

“J
® <
A
e ¥ 2 > O

)(4/)(1’)( > 0
gKl.: )<\>o
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Corollary

Let N= (P, T,F,V,mo) be a eS-Net. There exists a marking m* such that
N = (P, T, F,V,m") unbounded, iff C - x > 0 has an integer nonnegative solution.

Useful application of the corollary:

If there does not exist an integer nonnegative solution for C - x > 0, then for any initial
marking, N is bounded.
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